

Answering (Unions of) Join Queries using Random Access and Random-Order Enumeration

Nofar Carmeli

Joint work with Christoph Berkholz, Benny Kimelfeld, Nicole Schweikardt, and Shai Zeevi

Tasks & Motivation

Conjunctive Queries
Unions of Conjunctive Queries

Why Random Permutation?

Enumeration:

Downside: intermediate results not representative

Database

Downside: repeating answers

Query

very large

Random Permutation:

Each answer once, uniformly random order

Idea: Separate the Task

Find the number N of answers

Find a random permutation of 1,...,N

1 5 3 2 6 4

Random access to answers

Random Access

- Simulates precomputed results stored in an array
- Given i, returns the ith answer or "out of bound"

Consider 3 Tasks

Enumeration:

Database

Random Permutation:

Random Access:

Complexity of Query Evaluation

- Treat every query as a problem
- Consider time complexity
- Data complexity
 - Input: DB instance
 - Query size: constant
- RAM model [Grandjean1996]
 - Lookup table: construction in linear time search in constant time

When can we solve the tasks efficiently?

(linear preprocessing + polylog per answer)

Consider 3 Tasks

Enumeration:

Database

Random Permutation:

Random Access:

Random Access ⇒ Random Permutation

Find the number N of answers

Find a random permutation of 1,...,N

1 5 3 2 6 4

Random access to answers

Counting via RandomAccess

- Assumption: the number of answers is bound by a polynomial
- RandomAccess returns "out of bound" if needed
 - Allows checking if $|answers| \ge k$ in polylog time
- Binary search for |answers|
 - Requires $O(\log(|answers|))$ calls for RandomAccess
 - If |answers| is polynomial, $\log(|answers|) = O(\log(input))$
 - This takes polylog time

Random Access ⇒ Random Permutation

Find the number N of answers

Find a random permutation of 1,...,N

1 5 3 2 6 4

Random access to answers

Generating a Random Permutation

• Use the Fisher-Yates Shuffle [Durstenfeld 1964]

```
place 1, ..., n in array for i in 1, ..., n: choose j randomly from \{i, ..., n\} swap i and j
```


Generating a Random Permutation

Use the Fisher-Yates Shuffle [Durstenfeld 1964]

Constant delay variant:

```
place 1, ..., n in array (lazy initialization) for i in 1, ..., n:
   choose j randomly from \{i, ..., n\}
   swap i and j
   print a[i]
```

3 5 1 2 4

Consider 3 Tasks

Database

Enumeration:

Random Access:

Tasks & Motivation

Conjunctive Queries

Unions of Conjunctive Queries

CQs Dichotomy

After linear preprocessing

	Enumeration $\mathit{O}(1)$ delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	✓	✓	✓	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	X	X	X	Assuming the hardness of Boolean matrix multiplication.
Cyclic	X	X	X	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.
l				The lower bounds assume

no self-joins

Definitions

An acyclic CQ has a graph with:

A free-connex CQ also requires:

1. a node for every atom possibly also subsets

2. tree

3. for every variable X: the nodes containing X form a subtree

4. a subtree with exactly the free variables

Free-Connex CQs

$$Q(x,y,z) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

Can be answered efficiently

- 1. Find a join tree
- 2. Remove dangling tuples [Yannakakis81]
- 3. Ignore existential variables
- 4. Full Acyclic: Do what you want

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

R_2

 $v_1 y_1 \\ v_1 y_2 \\ v_2 y_2 \\ v_2 y_3$

 R_1

 $x_1 \ v_1 \ w_1$ $x_1 \ v_1 \ w_2$ $x_2 \ v_2 \ w_1$ $x_2 \ v_2 \ w_2$ $x_1 \ v_3 \ w_1$

 R_3

 $egin{array}{c} w_1 \, z_1 \ w_1 \, z_2 \ w_1 \, z_3 \ w_2 \, z_4 \ w_3 \, z_1 \ \end{array}$

 R_2

 $v_1 \ y_1 \ v_1 \ y_2 \ v_2 \ y_2 \ v_2 \ y_3$

 R_1

 $x_1 v_1 w_1$ $x_1 v_1 w_2$ $x_2 v_2 w_1$ $x_2 v_2 w_2$ R_3

 $w_1 \ z_1 \ w_1 \ z_2 \ w_1 \ z_3 \ w_2 \ z_4$

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Example:

 $Q(x, v, w, y, z) \leftarrow R_1(x, v, w), R_2(v, y), R_3(w, z)$

R_2

 $egin{array}{ccc} v_1 & y_1 & & \ v_1 & y_2 & & \ v_2 & y_2 & & \ v_2 & y_3 & & \ \end{array}$

R_1

 $x_1 v_1 w_1$ $x_1 v_1 w_2$ $x_2 v_2 w_1$ $x_2 v_2 w_2$

R_3

 $W_1 Z_1 \ W_1 Z_2 \ W_1 Z_3 \ W_2 Z_4$

R_2

 $v_1 y_1 \\ v_1 y_2$ $v_2 y_2$ $v_2 y_3$

R_1

 $x_1 v_1 w_1$ $x_1 v_1 w_2$ $x_2 v_2 w_1$ $x_2 v_2 w_2$

R_3

 $W_1 Z_1 \ W_1 Z_2 \ W_1 Z_3 \ W_2 Z_4$

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Example:

$$Q(x,v,w,y,z) \leftarrow R_1(x,v,w), R_2(v,y), R_3(w,z)$$

w = number of answers in subtree using this tuple s = cumulative sum of w within the bucket

R	2
v_1	y_1
v_1	<i>y</i> ₂
v_2	y_2
v_2	<i>y</i> ₃

	R	1
χ1	v_1	w_1
		W_2
		W_1
		W_2

R_2	W	S	W
$v_1 y_1$	1	0	2
$v_1 y_2$	1	1	_
$v_2 y_2$	1	0	2
$v_2 y_3$	1	1	_

R_1	W	S	W
$x_1 v_1 w_1 \\ x_1 v_1 w_2 \\ x_2 v_2 w_1 \\ x_2 v_2 w_2$	2	0 6 8 14	16

R_3	W	S	W
$W_1 Z_1$	1	0	
$W_1 Z_2$	1	1	3
$W_1 Z_3$	1	2	
$W_2 Z_4$	1	0	1

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Example:

$$Q(x,v,w,y,z) \leftarrow R_1(x,v,w), R_2(v,y), R_3(w,z)$$

w = number of answers in subtree using this tuple s = cumulative sum of w within the bucket

R_2	
$v_1 y_1 \\ v_1 y_2$	
$v_2 y_2$ $v_2 y_3$	

	R	1
Υ.	124	w_1
		W_2
		W_1
~2	ν ₂	W_2

R_2	w	S	W	j
$v_1 y_1 v_1 v_1 y_2$	1 1	0 1	2	
$v_2 y_2$ $v_2 y_3$	1 1	0 1	2	

	R_1	W	S	W
/	$x_1 v_1 w_1 x_1 v_1 w_2 x_2 v_2 w_1 x_2 v_2 w_2$	2	0 6 8 14	16
	2×3 :	= 6		

R_3	w	S	W
$W_1 Z_1$	1	0	
$W_1 Z_2$	1	1	3
$W_1 Z_3$	1	2	
$W_2 Z_4$	1	0	1

Access answer 11

$$11 - 8 = 3$$

Access index 3 of the answers
with $(x_2 \ v_2 \ w_1)$ in the subtree

Example: $Q(x, v, w, y, z) \leftarrow R_1(x, v, w), R_2(v, y), R_3(w, z)$

$(\mathcal{T})R_1$	w	S	W
$x_1 v_1 w_1$	6	0	
$x_1 v_1 w_2$	2	6	16
$x_2 v_2 w_1$	6	8	10
$x_2 v_2 w_2$	2	14	

$$8 \le 11 < 14$$

$$a_{11} = (x_2, v_2, w_1, y_3, z_1)$$

CQs Dichotomy

After linear preprocessing

	Enumeration $\mathit{O}(1)$ delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	✓	✓	✓	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	X	X	X	Assuming the hardness of Boolean matrix multiplication.
Cyclic	X	X	X	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.
				The lower bounds assume

no self-joins

Random Access ⇒ Random Permutation

Find the number N of answers

Find a random permutation of 1,...,N

1 5 3 2 6 4

Random access to answers

In Practice

- Compared to a sampling algorithm
 - [Zhao, Christensen, Li, Hu, and Yi SIGMOD 2018]
 - Modified to reject repeated answers
- TPC-H Queries

■ RENUM(CQ) preprocessing
■ RENUM(CQ) enumeration
■ SAMPLE(EW) preprocessing
■ SAMPLE(EW) enumeration

CQs Dichotomy

After linear preprocessing

	Enumeration $\mathit{O}(1)$ delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	✓	✓	✓	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	X	X	X	Assuming the hardness of Boolean matrix multiplication.
Cyclic	X	X	X	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.
				The lower bounds assume

no self-joins

Acyclic non-free-connex CQs [BaganDurandGrandjean CSL'2007]

Assumption: Boolean matrices cannot be multiplied in time $O(m^{1+o(1)})$ m = number of ones in the input and output

Acyclic non-free-connex: $Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$

O(m) preprocessing + $O(\log(m))$ delay = $O(m \log(m))$ total \implies not possible

CQs Dichotomy

After linear preprocessing

	Enumeration $\mathit{O}(1)$ delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	✓	✓	✓	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	X	X	X	Assuming the hardness of Boolean matrix multiplication.
Cyclic	X	X	X	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.
				The lower bounds assume

no self-joins

Cyclic CQs

Assumption: k-Hypercliques cannot be found in time O(m)m = number of edges of size k-1

Cyclic: $Q(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(x, z)$

CQs Dichotomy

After linear preprocessing

	Enumeration $\mathit{O}(1)$ delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	✓	✓	✓	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	X	X	X	Assuming the hardness of Boolean matrix multiplication.
Cyclic	X	X	X	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.
l				The lower bounds assume

no self-joins

CQs Dichotomy

Tasks & Motivation Conjunctive Queries

Unions of Conjunctive Queries

Enumeration: Easy U Easy = Easy

[DurandStrozecki CSL'2011]

```
while A.has_next():
    a = A.next()
    if a in B:
        print B.next()
    else:
    print a
    while B.has_next():
        print B.next()
```

A\B and B are a partition of AUB

* Even when considering non-redundant unions

Some UCQs containing only hard CQs are easy!

Access: Easy U Easy = Sometimes Hard

Proof (Example):

- $Q_1(x, y, z) \leftarrow R(x, y), S(y, z)$ free-connex
- $Q_2(x, y, z) \leftarrow S(y, z), T(x, z)$ free-connex
- $Q_1 \cap Q_2(x, y, z) \leftarrow R(x, y), S(y, z), T(x, z)$ cyclic
 - Cannot count in linear time
 - * assumption: cannot find a triangle in a graph in linear time.
- Assume by contradiction $Q_1 \cup Q_2 \in RandomAccess$
 - We can count $|Q_1 \cup Q_2|$ in linear time
 - Computes $|Q_1 \cap Q_2| = |Q_1| + |Q_2| |Q_1 \cup Q_2|$

Comparing the Tasks

UCQs: Enumeration ⇒ RandomAccess

Unions of Free-connex CQs

- Random access is not always possible
- What can we do?

- 1. Mutually Compatible UCQs
 - Subclass, allows for random access in log² time
- 2. Relax the delay requirements
 - Random permutation algorithm with expected log delay

- Random permutation algorithm for a union
- Requirements from each CQ:
 - Counting
 - Sampling
 - Testing
 - Deletion
- Free-connex CQs admit:
 - Counting
 - Random access
 - Inverted random access

Deletion:

- 1. Get the answer index
- 2. Swap the index with i
- 3. i++

Algorithm

while $\sum_{j} \left| Q_{j} \right| > 0$: choose Q_{i} with probability $\frac{\left| Q_{i} \right|}{\sum_{j} \left| Q_{j} \right|}$ ans = random answer of Q_{i}

We don't need this part

delete ans from Q_i print ans

Example

If the answers are disjoint,

$$Q_1$$
 a b c d

$$Q_2$$
 e f g

Probability of d :
$$\frac{4}{4+3}\frac{1}{4} = \frac{1}{7}$$

Choosing Q_1 Choosing d

Every answer is selected with probability $\frac{1}{7}$

Algorithm

while $\sum_{j} |Q_{j}| > 0$: choose Q_{i} with probability $\frac{|Q_{i}|}{\sum_{j} |Q_{j}|}$ $ans = \text{random answer of } Q_{i}$

We don't need this part

delete ans from Q_i print ans

Example

$$Q_1$$
 a b c d

$$Q_2$$
 e f b

Every cell is selected with probability $\frac{1}{7}$ b is selected with probability $\frac{2}{7}$

Algorithm

```
while \sum_{i} |Q_{i}| > 0:
  choose Q_i with probability \frac{|Q_i|}{\sum_i |Q_i|}
  ans = random answer of Q_i
  providers = \{Q_i | ans \in Q_i\}
  owner = first from providers
  for Q_i \in providers \setminus \{owner\}
     delete ans from Q_i
  If owner = Q_i:
     delete ans from Q_i
     print ans
```

Example

$$Q_1$$
 a b c d Q_2 e f b

Every cell is selected with probability $\frac{1}{7}$ b is selected with probability $\frac{1}{7}$ No answer with probability $\frac{1}{7}$

Algorithm

```
while \sum_{i} |Q_{i}| > 0:
  choose Q_i with probability \frac{|Q_i|}{\sum_i |Q_i|}
  ans = random answer of Q_i
  providers = \{Q_i | ans \in Q_i\}
  owner = first from providers
  for Q_i \in providers \setminus \{owner\}
     delete ans from Q_i
  If owner = Q_i:
     delete ans from Q_i
     print ans
```

- Constant number of operations per iteration
- Each operation takes log time
 - → Each iteration takes log time
- Every iteration prints with probability $\frac{1}{\#Queries} \le P \le 1$
 - → Expected log delay
- At most two iterations per answer
 - → Amortized log delay

In Practice

Time spent on rejections declines with time

In Practice

- Compares the UCQ alternatives
- Demonstrates the overhead caused by the union

Conclusions

- CQs:
 - 3 tasks tractable

 free-connex
- UCQs:
 - Enumeration ⇒ RandomAccess
 - mcUCQs: 3 tasks tractable
 - Union of free-connex: RandomPermutation with expected log delay
- Future Work:
 - Characterizing unions of free-connex CQs
 - Reducing space consumption

