

Enumeration Complexity of CQs with Functional Dependencies

Nofar Carmeli

Markus Kröll

Content

Settings & Motivation

Our Contribution

Future Work

Conjunctive Queries (CQs) - Example

Cast:

Movie	Actor
Pretty Woman	Richard Gere
Pretty Woman	Julia Roberts
Eat Pray Love	Julia Roberts
Forrest Gump	Tom Hanks

Release:

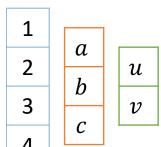
Movie	Budget
Pretty Woman	14 million
Eat Pray Love	60 million
Forrest Gump	55 million

Q:

Actor	Budget
Richard Gere	14 million
Julia Roberts	14 million
Julia Roberts	60 million
Tom Hanks	55 million

Q: a list of actors and the budgets of movies in which they participated $Q(Actor, Budget) \leftarrow cast(Movie, Actor) \land release(Movie, Budget)$

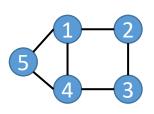
$$Q(\blacksquare \bullet) \leftarrow R_1(\triangle \blacksquare), R_2(\triangle \bullet)$$


Complexity of CQs

- Data complexity
 - Input: DB instance
 - The query is considered constant
- RAM model [Grandjean1996]
 - Lookup table: construction in linear time search in constant time

What is the best we can hope for?

Complexity of CQs


- Examples:
 - 1. Cartesian product

$Q(x, y, z) \leftarrow R(x) \wedge S(y) \wedge T(z)$	·)

1	a	u
1	a	v
1	b	u
1	b	v
1	С	u

2. Finding triangles

$$Q(x,y,z) \leftarrow R(x,y) \land R(y,z) \land R(x,z)$$

- Ideally:
 - linear scan before first (to read input)
 - constant delay between answers (to write results)

Complexity of CQs

- Ideally:
 - linear scan before first (to read input)
 - constant delay between answers (to write results)
- Can build a compact representation during the initial scan.

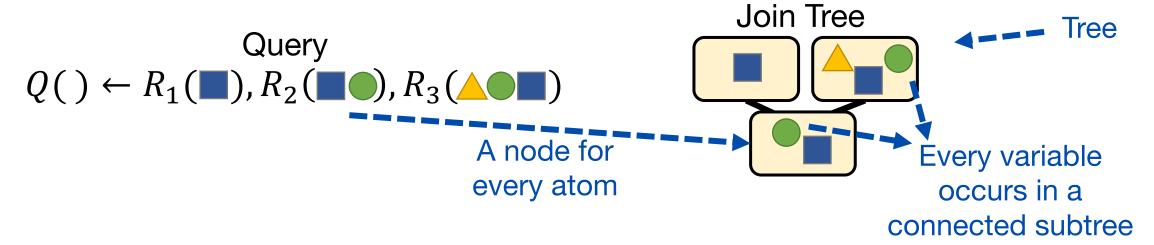
Can this always be done? No.

When can it be done?

 $DelayC_{lin}$: solvable with linear time preprocessing and constant delay

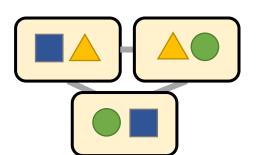
Which CQs are in $DelayC_{lin}$?

Known Dichotomy [BaganDurandGrandjean CSL'2007]


Dichotomy

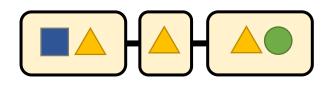
Self-join-free acyclic queries are

 $\in DelayC_{lin} \Leftrightarrow free-connex$

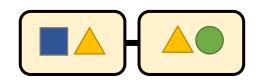

* assumption: Boolean matrix multiplication cannot be done in quadratic time

Join Tree

A query may have no join tree

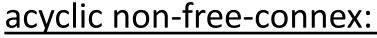

$$Q() \leftarrow R_1(\square \triangle), R_2(\triangle \square), R_3(\square \square)$$

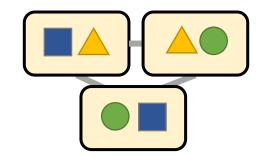
A query that has a join tree is called acyclic


CQ Classes

- Acyclic: has a join tree
- Free-connex: has a join tree including the head

acyclic free-connex:

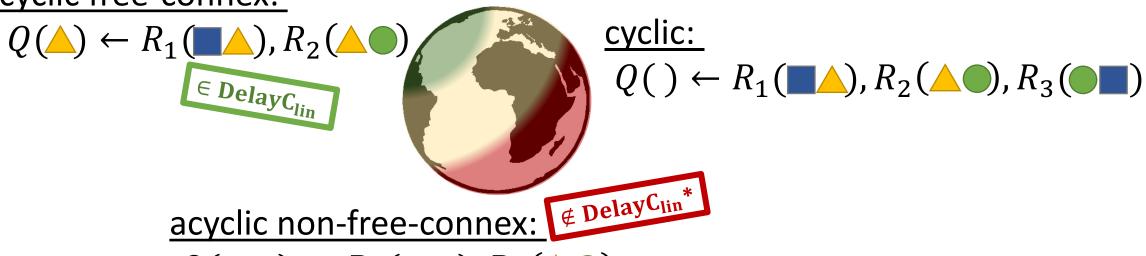




cyclic:

$$Q() \leftarrow R_1(\blacksquare \triangle), R_2(\triangle \blacksquare), R_3(\blacksquare \blacksquare)$$

$$Q(\bullet \blacksquare) \leftarrow R_1(\blacksquare \triangle), R_2(\triangle \bullet)$$

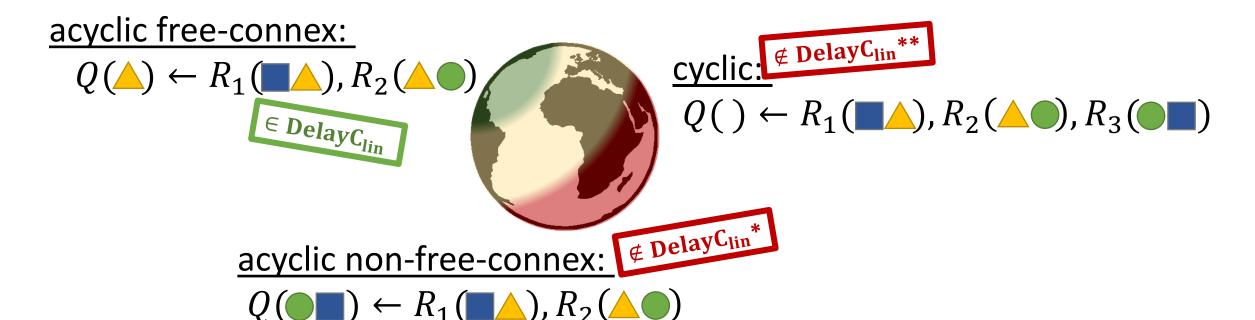

Known Dichotomy [BaganDurandGrandjean CSL'2007]

Self-join-free acyclic queries are

 $\in DelayC_{lin} \Leftrightarrow free-connex$

* assumption: Boolean matrix multiplication cannot be done in quadratic time

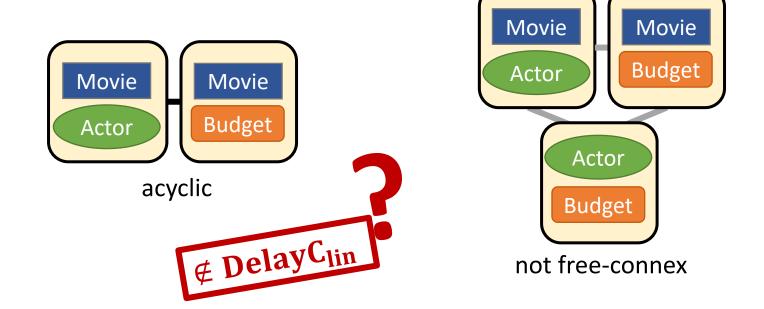
acyclic free-connex:


* no self joins, under the matrix multiplication assumption

 $Q(\bullet \bullet) \leftarrow R_1(\bullet \bullet), R_2(\bullet \bullet)$

Known Dichotomy [Brault-Baron 2013]

Self-join-free cyclic queries cannot be decided in linear time

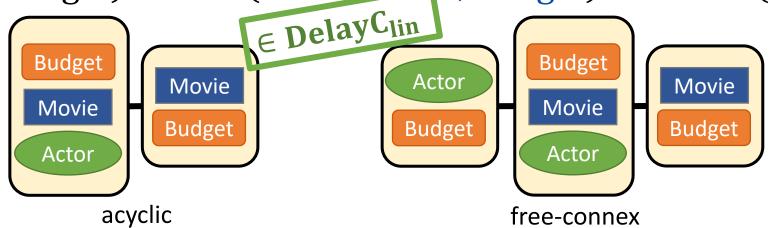

* assumption: the existence of a Tetra structure in a graph cannot be decided in linear time

* no self joins, under the matrix multiplication assumption

** no self joins, under the Tetra assumption

 $Q(Actor, Budget) \leftarrow cast(Movie, Actor) \land release(Movie, Budget)$

Q(Actor, Budget) \leftarrow cast(Movie, Actor) \land release(Movie, Budget)


Cast:

Movie	Actor	Budget
Pretty Woman	Richard Gere	14 million
Pretty Woman	Julia Roberts	14 million
Eat Pray Love	Julia Roberts	60 million
Forrest Gump	Tom Hanks	55 million

Release:

Movie	Budget
Pretty Woman	14 million
Eat Pray Love	60 million
Forrest Gump	55 million

 $Q^+(Actor, Budget) \leftarrow cast(Movie, Actor, Budget) \land release(Movie, Budget)$

$Q(Actor, Budget) \leftarrow cast(Movie, Actor) \land release(Movie, Budget)$

Cast:

Movie	Actor	Budget
Pretty Woman	Richard Gere	14 million
Pretty Woman	Julia Roberts	14 million
Eat Pray Love	Julia Roberts	60 million
Forrest Gump	Tom Hanks	55 million

Release:

Movie	Budget
Pretty Woman	14 million
Eat Pray Love	60 million
Forrest Gump	55 million

 $Q^+(Actor, Budget) \leftarrow cast(Movie, Actor, Budget) \land release(Movie, Budget)$

- Functional dependency (FD):
 - A movie cannot have more than one budget
 - release: $1 \rightarrow 2$

```
Q(Actor, Budget) \leftarrow cast(Movie, Actor) \land release(Movie, Budget) release: 1 \rightarrow 2
\in DelayC_{lin}
```

But the dichotomy said Q ∉ **DelayC**_{lin}!

- Not really.
- The hardness result is based on a reduction $\operatorname{Enum}(\Pi) \leq_e \operatorname{Enum}_{\Delta}(Q)$
- The reduction may assign release any combination of tuples
- It doesn't apply with FDs

Our Goal

Classification of CQ/FDs combinations w.r.t. $DelayC_{lin}$

Content

Settings & Motivation

Our Contribution

Future Work

Method

- Define the extended query —
- Classify according to the extension

Treat the FDs as between variables

Apply the FDs to all relevant atoms(+head)

$$Q^{+}(x,y) \leftarrow R_{1}(x,y), R_{2}(x,z,y,w), R_{3}(w,y,z)$$

$$R_{1}: 1 \rightarrow 2$$

$$R_{3}: 2,3 \rightarrow 1$$

$$x \rightarrow y$$

$$Q'(x,y) \leftarrow R_{1}(x,y), R_{2}(x,z), R_{3}(w,y,z)$$

$$R_{2}: 1 \rightarrow 3$$

$$R_{2}: 1 \rightarrow 3$$

$$R_{2}: 3,2 \rightarrow 4$$

$$x \rightarrow y$$

$$Q''(x,y) \leftarrow R_{1}(x,y), R_{2}(x,z), R_{3}(w,y,z)$$

$$R_{1}: 1 \rightarrow 2$$

$$R_{1}: 1 \rightarrow 2$$

$$R_{3}: 2,3 \rightarrow 1$$

$$R_{2}: 1 \rightarrow 3$$

$$Q''(x,y) \leftarrow R_{1}(x,y), R_{2}(x,z,y), R_{3}(w,y,z)$$

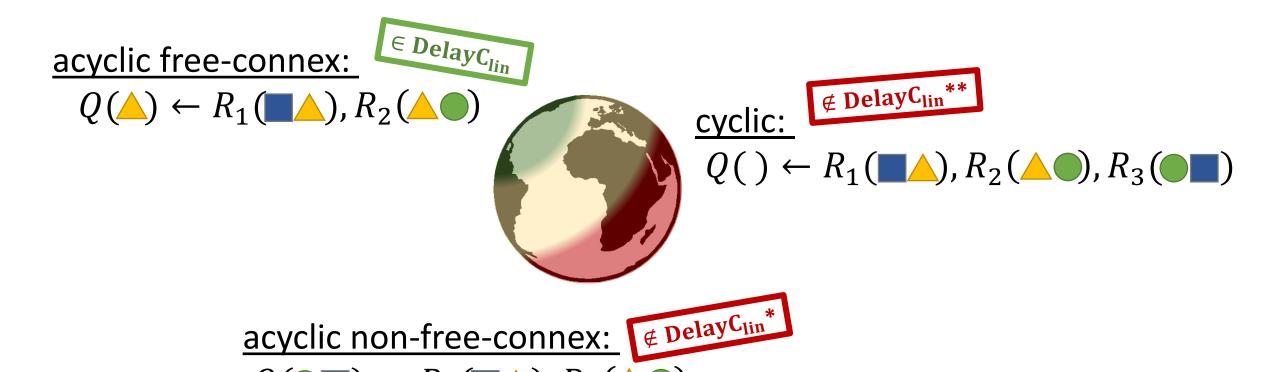
$$R_{1}: 1 \rightarrow 2$$

$$R_{3}: 2,3 \rightarrow 1$$

$$R_{2}: 1 \rightarrow 3$$

Method

- Define the extended query <
- Classify according to the extension


Treat the FDs as between variables

Apply the FDs to all relevant atoms(+head)

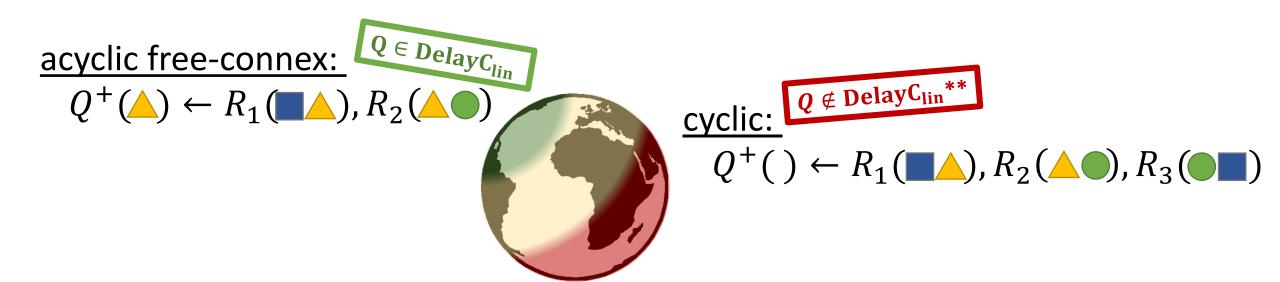
$$Q(x) \leftarrow R_1(x, y), R_2(x, z), R_3(w, y, z)$$

 $R_1: 1 \to 2$
 $R_3: 2, 3 \to 1$

$$Q^{+}(x,y) \leftarrow R_{1}(x,y), R_{2}(x,z,y,w), R_{3}(w,y,z)$$

 $R_{1}: 1 \rightarrow 2$
 $R_{3}: 2,3 \rightarrow 1$
 $R_{2}: 1 \rightarrow 3$
 $R_{2}: 3,2 \rightarrow 4$

Known Results



* no self joins, under the matrix multiplication assumption

 $Q(\bullet \bullet) \leftarrow R_1(\bullet \bullet), R_2(\bullet \bullet)$

** no self joins, under the Tetra assumption

Our Results

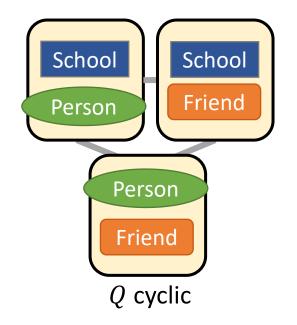
acyclic non-free-connex:

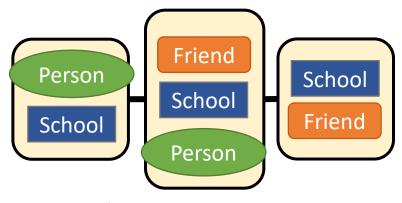
cyclic non-free-connex:
$$Q \notin DelayC_{lin}^*$$

$$Q^+(\bigcirc \square) \leftarrow R_1(\square \triangle), R_2(\triangle \bigcirc)$$

* no self joins, under the matrix multiplication assumption

** no self joins, only unary FDs, under the Tetra assumption

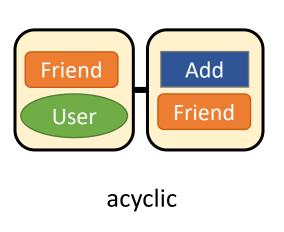

Another Example

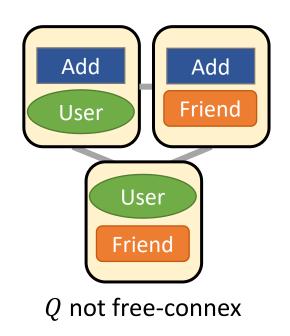

Q(Person, Friend) ← friends(Person, Friend) ∧ students(Person, School) ∧ students(Friend, School)

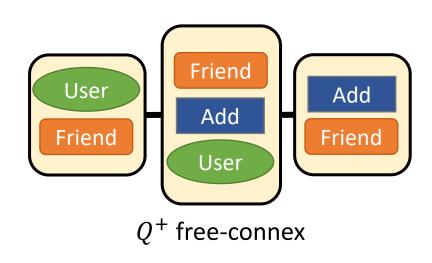
students: Person → School

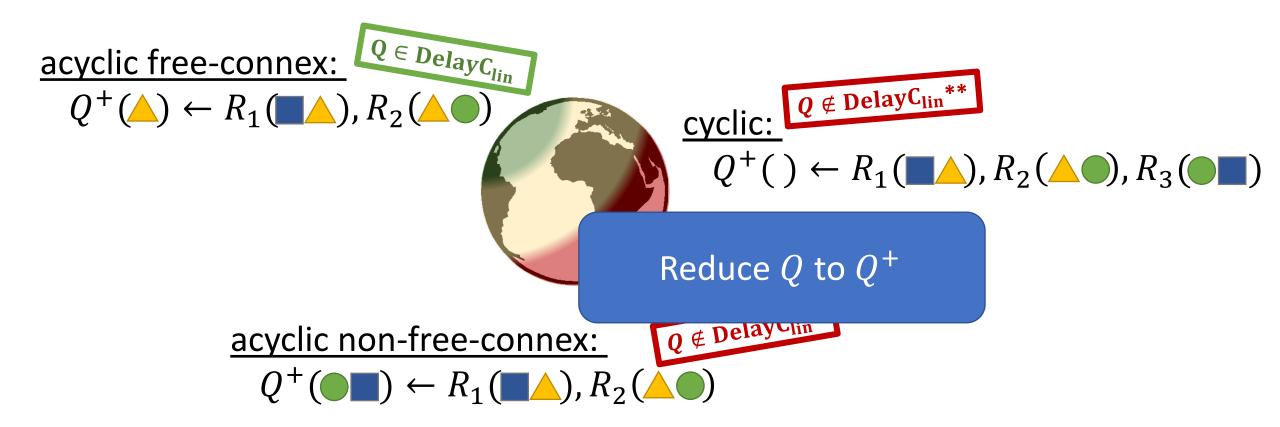
Q(Person, Friend, School) ← friends(Person, Friend, School) ∧ students(Friend, School) ∧ students(Friend, School)

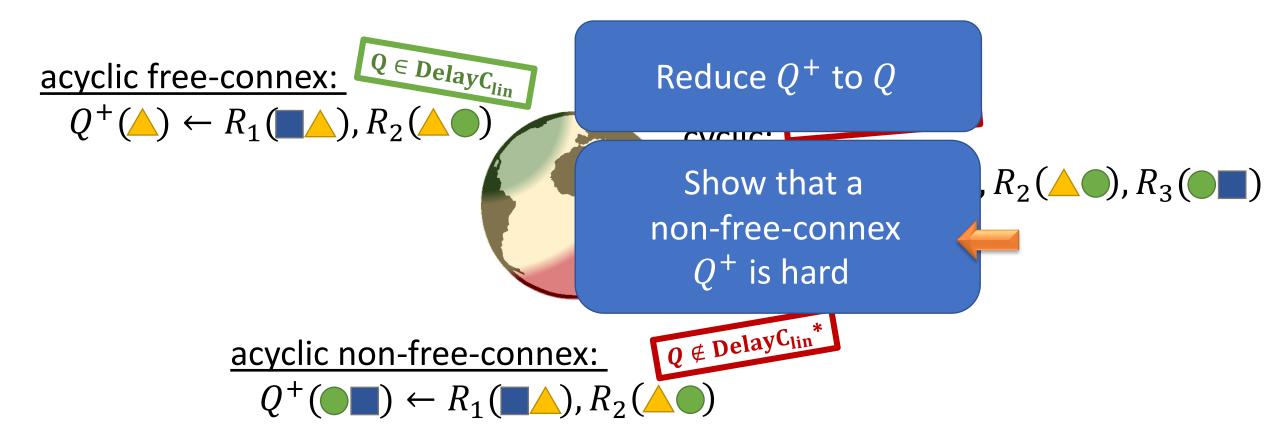
 Q^+ free-connex acyclic


Another Example


 $Q(User, Ad) \leftarrow friends(User, Friend) \land clicked(Friend, Ad)$


- Cardinality dependency:
 - A user cannot have more than 5000 friends
 - friends(User \rightarrow Friend, 5000)


 $Q^+(User, Ad, Friend) \leftarrow friends(User, Friend) \land clicked(Friend, Ad)$

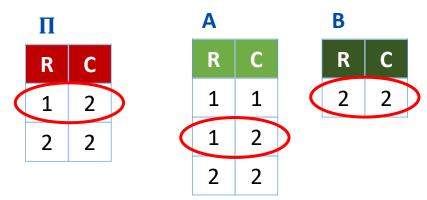

Our Results

^{*} no self joins, under the matrix multiplication assumption

^{**} no self joins, only unary FDs, under the Tetra assumption

Our Results

^{*} no self joins, under the matrix multiplication assumption


^{**} no self joins, only unary FDs, under the Tetra assumption

Proof [BaganDurandGrandjean CSL'2007]

• Assumption: Boolean $n \times n$ matrix multiplication cannot be done in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

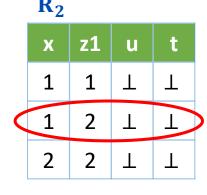
• Therefore, answering $\Pi(a,b) \leftarrow A(a,c) \land B(c,b)$ is not in $DelayC_{lin}$

$$\begin{pmatrix} 1 & \textcircled{1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \textcircled{1} \end{pmatrix} = \begin{pmatrix} 0 & \textcircled{1} \\ 0 & 1 \end{pmatrix}$$

В	
R	С
2	2

$\Pi(x,y)$	$\leftarrow A(x,z)$	$\wedge B(z,y)$ is not	in $DelayC_{lin}$
------------	---------------------	------------------------	-------------------

Problem in case $R_1: v \to x$


Solution: assign v with the same values as x

Reduction

$$Q(x, y, u) \leftarrow R_1(x, v), R_2(x, z_1, u, t), R_3(z_1, z_2, u), R_4(z_2, y, u)$$

	Ν3		
	z1	z2	u
	1	1	1
(2	2	

	R_4		
	z2	у	u
(2	2	

2

BRC22

$\Pi(x,y) \leftarrow$	$-A(x,z) \wedge$	B(z, y) is	s not in	$DelayC_{lin}$
-----------------------	------------------	------------	----------	----------------

Problem in case $R_2: ut \rightarrow x$

Reduction

Solution: assign both u and t the same value as x?

 $Q(x, y, u) \leftarrow R_1(x, v), R_2(x, z_1, u, t), R_3(z_1, z_2, u), R_4(z_2, y, u)$

x y u

1 2 1
2 2 2

x z1 u t

1 1 1 1

1 2 1 1

2 2 2 2 2

z1 z2 u 1 1 ⊥ 2 2 2 z2 y u 2 2 2

2

В	
R	С
2	2

$\Pi(x,y) \leftarrow A(x$	$(z,z) \wedge B(z,y)$	is not in $DelayC_{lin}$
---------------------------	-----------------------	--------------------------

Problem in case R_2 : $ut \rightarrow x$

Reduction

Solution: only assign t the same value as x

$Q(x, y, u) \leftarrow R_1(x, v), R_2(x, z_1, u, t), R_3(z_1, z_2, u),$	$R_4(z_2)$	y, u)
---	------------	-------

Q

X	У	u
1	2	1
2	2	1

 $\mathbf{R_1}$

1	
Х	V
1	丄
2	上

 $\mathbf{R_2}$

х	z1	u	t
1	1	上	1
1	2	丄	1
2	2	Τ	2

 $\mathbf{R_3}$

z1	z2	u
1	1	Τ
2	2	T

 $\mathbf{R_4}$

z2	У	u
2	2	Т

Is it always possible to adjust this reduction s.t.

- Construction in linear time
- One-one mapping of answers
 - FDs hold

7

If it is an FD-extension, we prove that it is

1

In General

- In the presence of FDs, more queries are tractable
- We show how to use FD-extensions to:
 - Show tractability of additional queries
 - Adjust hardness results to apply with FDs

Content

Settings & Motivation

Our Contribution

Future Work

Future Work

- Completing the dichotomy
 - Show Q^+ is cyclic $\Rightarrow Q$ not in $DelayC_{lin}$ for general FDs
- A dichotomy for negated queries
 - Negated acyclic queries can be answered with logarithmic delay after quasilinear time preprocessing iff they are free-connex signed-acyclic [Brault-Baron2013]
- Using a weaker complexity assumption for the cyclic case
- Richer query classes
 - Remove the no self joins assumption

