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G(n, p) for varying n and p. . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Delay behavior in two printing modes: UG (Upon Generation, as in

EnumMIS), and UP (Upon Pop, as in EnumMISHold). . . . . . . . . 145

6.6 Cumulative number of triangulations. . . . . . . . . . . . . . . . . . . . 147

6.7 Minimum width and fill over time. . . . . . . . . . . . . . . . . . . . . . 147





List of Algorithms

3.1 Enumerating a union of two tractable CQs [Str10] . . . . . . . . . . . . 26

4.1 Random permutation of the indices 0, . . . , n−1 . . . . . . . . . . . . . . 72

4.2 Preprocessing for a globally consistent full acyclic join query . . . . . . . 75

4.3 Random access for a globally consistent full acyclic join query . . . . . . 75

4.4 Inverted access for a globally consistent full acyclic join query . . . . . . 76

4.5 Enumeration for a globally consistent full acyclic join query . . . . . . . 78

4.6 Counting, testing, sampling and deletion for 0, . . . , n−1 . . . . . . . . . 83

4.7 counting, testing, sampling and deletion for P . . . . . . . . . . . . . . . 84

4.8 Random-order enumeration of S1 ∪ S2 given the intersection size . . . . 85

4.9 Random-order enumeration of S1 ∪ · · · ∪ Sk . . . . . . . . . . . . . . . . 87

6.1 Enumerating maximal independent sets for an SGR . . . . . . . . . . . 125

6.2 Enumerating minimal separators with polynomial delay . . . . . . . . . 133

6.3 Extending a set of pairwise-parallel minimal separators . . . . . . . . . . 135





Abstract

We inspect the fine-grained complexity of answering queries over relational databases.

With the ideal guarantees, linear time is required before the first answer to read the

input and determine its existence, and then we need to print the answers one by one.

Consequently, we wish to identify the queries that can be solved with linear preprocessing

time and constant or logarithmic delay between answers. A known dichotomy classifies

CQs into those that admit such enumeration and those that do not. The computationally

expensive component of query answering is joining tables, which can be done efficiently

if and only if the join query is acyclic. However, the join query usually does not appear

in a vacuum. For example, it may be part of a larger query, or it may be applied

to a database with dependencies. We inspect how the complexity changes in these

settings and chart the borders of tractability within. In addition, we consider the task

of enumerating query answers with a uniformly random order, and we propose to do

so using a random-access structure for representing the set of answers. Our results

are accompanied by conditional lower bounds showing that our algorithms capture all

tractable cases for some query classes. Among our results, we show that a union of

intractable conjunctive queries may be tractable w.r.t. enumeration, while on the other

hand, a union of tractable conjunctive queries may be intractable w.r.t. random access.

To handle cases where we cannot reach efficient enumeration after linear preprocessing

time, we also suggest an algorithm for generating tree decompositions. This algorithm

can be used to simplify intractable queries by extracting an acyclic structure.
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Chapter 1

Introduction

Evaluating queries over databases is a fundamental and well-studied problem in data

management. As data becomes bigger, and data analytics becomes more crucial to

digital systems, so grows the importance of characterizing the queries that admit a

highly efficient evaluation. In the effort of reducing the computational cost of answering

database queries to the very least possible, recent years have seen a substantial progress

in understanding the fine-grained data complexity of enumerating query answers.

When evaluating a query over a database, the number of answers may be huge,

orders of magnitude larger than the size of the database itself. As we cannot hope to

produce this many answers in time linear in the size of the input database, we need to

use different complexity measures, and we turn to enumeration complexity. The best

time guarantee we can hope for is to output all answers with a constant delay between

consecutive answers after a linear preprocessing phase. This is the time it takes to read

the database and then write the answers one by one. We denote the class of enumeration

problems that can be solved within these time bounds as Enum〈lin, const〉. This class

can be regarded as the most efficient class of nontrivial enumeration problems.

When it comes to query answering, it is common to use data complexity. We treat

every query as fixed, and we identify it with the following enumeration problem: given

a database as input, find all answers to the query over the given database. In particular,

for the purpose of complexity analysis, the size of query (which is usually very small

compared to the size of the database) is treated as a constant.

The very basic building blocks of common query classes are joins, which allow the

combination of several relations in a single query. Joins are also usually the most

computationally expensive part of answering queries. Let us first consider queries that

comprise solely of joins. Providing even a first answer of such a query in linear time is

impossible in general [PY99]. This does not imply, however, that no join queries are

in Enum〈lin, const〉. In fact, a classic algorithm by Yannakakis [Yan81b] can answer

any join query with an acyclic structure efficiently. Given any cyclic join query, and in

the absence of self-joins (i.e., when every relation occurs at most once in the query),

Brault-Baron [BB13] showed that it is not possible to determine whether the query

3



has answers in linear time. This is a conditional lower bound, which holds under a

generalization of the assumption that it is not possible to detect a triangle in a graph in

linear time. Combining these results leads to a dichotomy for self-join-free join queries:

answering such a query is in Enum〈lin, const〉 if and only if the query is acyclic.

We next consider Conjunctive Queries (CQs) which consist of join queries followed

by projection. Introducing projection may increase the difficulty of answering queries in

constant delay. Two different join answers may become identical after projection. Since

we do not allow to output duplicates, this reduces the total number of answers, and

so we allow the algorithm less time in total to perform the join. Bagan, Durand and

Grandjean [BDG07] defined a subclass of acyclic CQs called free-connex. An acyclic CQ

is called free-connex if the query remains acyclic when adding an atom containing exactly

the free-variables. They established that free-connex CQs are in Enum〈lin, const〉, and

that self-join-free acyclic CQs that are not free-connex cannot be solved within these

bounds. The hardness results here are again conditional lower bounds, and they rely on

the assumed hardness of Boolean matrix multiplication.

Combining the dichotomy for acyclic CQs with the lower bounds for cyclic CQs,

we get a dichotomy for self-join-free conjunctive queries: assuming the aforementioned

hypotheses, answering such a self-join-free CQ is in Enum〈lin, const〉 if and only if the

query is acyclic free-connex. In the years following this dichotomy, much work has been

conducted to achieve similar results for other classes of queries [Seg15, Dur20].

The next natural step in considering more expressible query classes, is Unions of

Conjunctive Queries, UCQs for short. UCQs form an important class of queries, as

they capture the positive fragment of the relational algebra. Previous work that implies

results on the enumeration complexity of UCQs imposes strong restrictions on the

underlying database [SV17]. Here, we aim to understand the enumeration complexity

of UCQs without such restrictions and based solely on their structure.

A union of tractable CQs is always tractable [Str10]. We inspect the case that a

union contains an intractable CQ. We define the notion of union extensions, and show

that even if a CQ is not naturally acyclic, it may admit implicit acyclicity as part of

the union. Thus, we show that some unions containing intractable CQs are, in fact,

tractable. Interestingly, some unions consisting of only intractable CQs are tractable too.

The question of finding a full characterization of the tractability of UCQs remains open.

Nevertheless, we prove that for several classes of queries, free-connex union extensions

fully capture the tractable cases.

Next, we aim to obtain more when we evaluate a tractable query. We seek a structure

that supports the more demanding task of a random permutation: enumeration in truly

random order. Enumeration of this kind is required if downstream applications assume

that the intermediate results are representative of the whole result set in a statistically

valuable manner. An even more demanding task is that of a random access : the retrieval

of an answer based on its position. We show how we can use random access to achieve

random permutation, and study these two tasks compared to enumeration.

4



We consider the tractability yardstick of answer enumeration with a logarithmic

delay after a linear-time preprocessing phase. We establish that the acyclic free-connex

CQs are tractable in all three senses: enumeration, random permutation, and random

access; and in the absence of self-joins, it follows from the hardness results we discussed

that every other CQ is intractable by each of the three (under fine-grained complexity

assumptions). However, the three yardsticks are separated in the case of a UCQ: while a

union of acyclic free-connex CQs always admits efficient enumeration, it may not admit

efficient random access. We identify a subclass of the unions of acyclic free-connex

CQs that admit efficient random permutation, and devise a random-order enumeration

algorithm whose delay is logarithmic in expectation for the rest.

The classification results we mentioned make no assumptions on the input database.

Thus, the hardness results no longer hold in the common case that the database exhibits

dependencies among attributes. We study the complexity of enumerating the query

answers in the presence of Functional Dependencies (FDs). We show that some queries

that are classified as hard are in fact tractable if dependencies are accounted for. We

define the notion of FD-extensions, and show that these can convert queries of an

intractable form to an acyclic free-connex form. We establish a generalization of the

dichotomy to accommodate unary FDs (where one attribute implies another); hence, our

classification determines which combination of a query and a set of FDs admits efficient

enumeration, random permutation and random access. In addition, we generalize the

the results for acyclic CQs to accommodate general FDs (where a combination of

attributes imply other attributes). Our results also apply in the presence of cardinality

dependencies that generalize FDs.

Our last resort, when it is not possible to use dependencies or union extensions

to rewrite queries into a tractable form, is to decompose the query. Given the graph

describing a query, our task is to find a tree-decomposition of high quality for this

graph. With a tree-decomposition at hand, we can transform an intractable query into

an acyclic form [GGS05]. However, this transformation requires a non-linear overhead,

and it will not achieve the time bounds of linear preprocessing followed by a constant or

logarithmic delay. Nonetheless, using a tree-decomposition can reduce the computation

time significantly compared to a naive evaluation, and the quality of the decomposition

can affect this time dramatically. As finding the best tree-decomposition by common

measures is NP-hard [ACP87], we devise an anytime algorithm that enumerates tree-

decompositions. The user can choose to stop the algorithm whenever a decomposition

produced is deemed good enough.

Next, we go into more details regarding each of the goals of this thesis.

Answering UCQs with Constant Delay

Using known methods [Str10], a union of tractable enumeration problems is again

tractable. As a result, any union of acyclic free-connex CQs is in Enum〈lin, const〉.
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However, what happens if some CQs of a union are tractable while others are not?

Intuitively, one might be tempted to expect a union of enumeration problems to be

harder than a single problem within the union, making such a UCQ intractable as well.

As we will show, this is not necessarily the case.

Example 1.1. Let Q = Q1 ∪Q2 with

Q1(x, y)← R1(x, y), R2(y, z), R3(z, x) and

Q2(x, y)← R1(x, y), R2(y, z).

Even though Q1 is hard while Q2 is easy, a closer look shows that Q2 contains Q1. This

means that Q1 is redundant, and the entire union is equivalent to the easy Q2. �

To avoid cases like these, where the UCQ can be translated to a simpler one, it makes

sense to consider non-redundant unions. It was claimed that in all cases of a non-

redundant union containing an intractable CQ, the UCQ is intractable too [BKS18].

The following is a counter example which refutes this claim.

Example 1.2. Let Q = Q1 ∪Q2 with

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, y), R2(y, w).

According to the dichotomy of Bagan et al. [BDG07], the enumeration problem for

Q2 is in Enum〈lin, const〉, while Q1 is intractable. Yet, it turns out that Q is in fact

in Enum〈lin, const〉. The reason is that, since Q1 and Q2 are evaluated over the same

database I, we can use Q2(I) to find Q1(I). We can compute Q2(I) efficiently, and try

to extend every such solution to solutions of Q1 with a constant delay: for every new

combination a, c of an output (a, b, c) ∈ Q2(I), we find all d values with (b, d) ∈ RI3 and

then output the solution (a, c, d) ∈ Q1(I). Intuitively, the source of intractability for Q1

is the join of R1 with R2 as we need to avoid duplicates that originate in different z

values. The union is tractable since Q2 returns exactly this join. �

As the example illustrates, to compute the answers to a UCQ in an efficient way, it

is not enough to view it as a union of isolated instances of CQ enumeration. In fact, this

task requires an understanding of the interaction between several queries. Example 1.2

shows that the presence of an easy query within the union may give us enough time

to compute auxiliary data structures that can be added to the hard queries in order

to enumerate their answers as well. In Example 1.2, we can assume that we have a

ternary relation holding the result of Q2. Then, adding the auxiliary atom RQ2(x, z, y)

to Q1 results in a tractable structure. We generalize this observation and introduce

the concept of union extensions. We then use union extensions as a central tool for

evaluating the enumeration complexity of UCQs, as the structure of such queries has

implications on the tractability of the UCQ.

Interestingly, this approach can be taken a step further: We show that the concept

of extending the union by auxiliary atoms can even be used to efficiently enumerate
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the answers of UCQs that contain only hard queries. We show that UCQs that admit

a free-connex union extension are tractable. This results in a sufficient condition for

membership in Enum〈lin, const〉 beyond any classification of individual CQs.

To prove the efficiency of union extensions, we present what we refer to as the

Cheater’s Lemma. This lemma identifies a sufficient condition to show that a problem

can be solved in linear preprocessing time and constant delay. To this aim, we define

linear partial time: a complexity measure that requires that, if we consider the time

between the beginning of the run and the production of any answer, this time is linear

in the input size and the number of previously produced answers. The Cheater’s lemma

proves that in order to conclude that a problem is in Enum〈lin, const〉, it is sufficient

to show a linear partial time algorithm that produces every unique answer at most a

constant number of times.

We prove that for several classes of queries, free-connex union extensions fully capture

the tractable UCQs. In particular, a union of two intractable CQs that does not admit

such an extension is intractable. The hardness results presented here rely on common

lower-bound assumptions such as the hardness of Boolean matrix-multiplication [LG14]

and finding a hyperclique in a graph [LWW18].

Finding a full characterization of UCQs with respect to Enum〈lin, const〉 remains

an open problem. Nevertheless, we identify a computational hypothesis on graphs that

is tightly related to our problem: unbalanced triangle detection. We show that if we

assume the hardness of unbalanced triangle detection, a union of two self-join-free binary

CQs is tractable iff it has a free-connex union extension. On the other hand, if such

union extensions cover all tractable UCQs, unbalanced triangle detection is necessarily

hard. We also discuss the connection between this hypothesis and the well-known 3SUM

conjecture [GO95].

Why are lower bounds for UCQs fundamentally more challenging than for CQs? In

the case of CQs, hardness results are often shown by reducing a computationally hard

problem to the task of answering a query. The reduction encodes the hard problem to

the relations of a self-join free CQ, such that the answers of the CQ correspond to an

answer of this problem [BDG07, BB13, BKS17]. However, using such an encoding for

CQs within a union does not always work. Similarly to the case of CQs with self-joins,

relational symbols that appear multiple times within a query can interfere with the

reduction. Indeed, when encoding a hard problem to an intractable CQ within a union,

a different CQ in the union evaluates over the same relations, and may also produce

answers. A large number of such supplementary answers, with constant delay per

answer, accumulates to a long delay until we obtain the answers that correspond to the

computationally hard problem. If this delay is larger than the lower bound we assume

for the hard problem, we cannot conclude that the UCQ is intractable.

The lower bounds we present are obtained either by identifying classes of UCQs

for which we can use similar reductions to the ones used for CQs, or by introducing

alternative reductions.
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We also inspect UCQs with disequalities (i.e., 6= symbols). In the case of CQs with

disequalities, the disequalities have no effect on the enumeration complexity [BDG07].

That is, one can simply ignore the disequalities, and the remaining CQ is free-connex if

and only if the query is tractable (under the same assumptions). A natural question is:

does this happen also with UCQs? We show that the answer is negative: a tractable

UCQ may become intractable when adding disequalities. We then show how to identify

easy UCQs with disequalities using the same techniques we introduce for UCQs without

them.

The final modification we consider is that of restricted space. We discuss the space

consumption used in our approach, and demonstrate that in some cases it can be

reduced to constant additional space. The question of when exactly this can be done

remains open, but we claim in favor of using the measure of linear partial time as an

intermediate step for future research.

Enumerating Query Answers in Random Order

As a query-evaluation paradigm, the enumeration approach has the important guarantee

that the number of produced results is proportional to the elapsed processing time. This

guarantee is useful when the query is a part of a larger analytics pipeline where the

answers are fed into downstream processing such as machine learning, summarisation,

and search. The intermediate results can be used to save time by invoking the next-step

processing (e.g., as in streaming learning algorithms [SK01]), computing approximate

summaries that improve in time (e.g., as in online aggregation [HH99, LWYZ19]), and

presenting the first pages of search results (e.g., as in keyword search over structured

data [HP02, GKS08]). Yet, at least the latter two applications make the implicit

assumption that the collection of intermediate results is a representative of the entire

space of answers. In contrast, the aforementioned constant-delay algorithms enumerate

in an order that is a merely an artifact of the tree selected to utilize free-connexity, and

hence, intermediate answers may feature an extreme bias. There has been a considerable

recent progress in understanding the ability to enumerate the answers not just efficiently,

but also in a ranked manner [DK19, TAG+19]. Yet, to be a statistically meaningful

representation of the space of answers, the enumeration order needs to be random.

We investigate the task of enumerating answers in a uniformly random order. To

be more precise, the goal is to enumerate the answers without repetitions, and the

output induces a uniform distribution over the space of permutations of the answer

set. We refer to this task as random permutation. Similarly to the recent work on

ranked enumeration [DK19, TAG+19], our focus here is on achieving a logarithmic

delay after a linear preprocessing time. Hence, more technically, the goal we seek

is to construct in linear-time a data structure that allows to sample query answers

without replacement, with a logarithmic-time per sample. Note that sampling with

replacement has been studied in the past [AGPR99, CMN99] and recently gained a
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renewed attention [ZCL+18].

One way of achieving a random permutation is via random access—a structure

that is tied to some enumeration order and, given a position i, returns the ith answer

in the order. Random access, in general, can be seen as an efficient way of accessing

the query answers as if they are already computed and stored in an array. One could

imagine additional uses for an efficient random-access algorithm. For example, a server

implementing a random-access algorithm can provide answers to concurrent users in a

stateless manner: the users ask for a range of indices, and the server does not need to

keep track of the answers already sent to each user. To satisfy our target of an efficient

permutation, we need a random-access structure that can be constructed in linear time

(preprocessing) and supports answer retrieval (given i) in logarithmic time. We show

that, having this structure at hand, we can use the Fisher-Yates shuffle [Dur64] to

design a random permutation with a negligible additive overhead over the preprocessing

and enumeration phases.

So far, we have mentioned three tasks of an increasing demand: (a) enumeration,

(b) random permutation, and (c) random access. We show that all three tasks can be

performed efficiently (i.e., linear preprocessing time and evaluation with logarithmic

time per answer) over the class of free-connex CQs. We conclude that within the class

of CQs without self-joins, it is the same precise set of queries where these tasks are

tractable—the free-connex CQs. (We remind the reader that all mentioned lower bounds

are under assumptions in fine-grained complexity.) The existence of a random access

for free-connex CQs has been established by Brault-Baron [BB13]. Here, we devise our

own random-access algorithm for free-connex CQs that is simpler and better lends itself

to a practical implementation. Moreover, we design our algorithm in such a way that it

is accompanied by an inverted access that is needed for our later results on UCQs.

Note that an alternative approach to our algorithm for random permutation would

be to repeatedly sample tuples uniformly with replacement (using known techniques,

e.g., [ZCL+18]) and reject tuples that have already been produced. In expectation, this

alternative would have the same total time as our algorithm, namely O(M logM) where

M is the number of answers, due to the coupon collector argument and the fact that

the delay of our algorithm is O(logM). However, this alternative approach would not

have the strict (and deterministic) guarantee that we provide on the delay, and would

not even be counted as an enumeration algorithm with a sublinear delay.

The tractability of enumeration generalizes from free-connex CQs to unions of

free-connex CQs [CK19b, BKS18]. Interestingly, this is no longer the case for random

access. The reason is as follows. Efficient random access, which identifies when a given

index is out of bound, allows to count the answers; while counting can be done in linear

time for free-connex CQs, we show the existence of a union of free-connex CQs where

linear-time counting can be used for linear-time triangle detection in a graph, which

is assumed not to be possible. At this point, we ask: Can we get an efficient random

permutation for unions of free-connex CQs, without requiring a random access? We
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show that the answer is positive under the following weakening of the delay guarantee:

there is a random permutation where each delay is a geometric random variable with a

logarithmic mean. In particular, each delay is logarithmic in expectation. We also show

a random-permutation algorithm with a logarithmic bound of the delay that can be

used for some classes of UCQs.

Finally, we inspect the space used by our random-permutation solutions, and show

that they can be implemented with the minimal space required for random permutation.

Exploiting Functional Dependencies for Query Answering

The characterizations discussed so far only hold when applied to databases with no

additional assumptions, but oftentimes this is not the case. In practice, there is

usually a connection between different attributes, and Functional Dependencies (FDs)

and Cardinality Dependencies (CDs) are widely used to model situations where some

attributes imply others. As the following example shows, these constraints also have an

immediate effect on the complexity of enumerating query answers over such a schema.

Example 1.3. For a list of actors and the years in which a movie featuring them was

released, consider the query

Q(actor, year)← Cast(movie, actor),Release(movie, year).

At first glance, it appears as though this query is not in Enum〈lin, const〉, as it is acyclic

but not free-connex. Nevertheless, if we take the fact that a movie has only one release

date into account, we have the FD Release : 1 → 2, and the enumeration problem

becomes easy: we only need to iterate over all tuples of Cast and replace the movie

value with the single year value that the relation Release assigns to it. This can be

done in linear time by first building a lookup table from Release in linear time. �

Example 1.3 shows that the dichotomy by Bagan et al. [BDG07] does not hold

in the presence of FDs. In fact, we believe that dependencies between attributes are

so common in real life that ignoring them in such dichotomies can lead to missing a

significant portion of the tractable cases. Therefore, to get a more realistic picture of

the enumeration complexity of CQs, we have to take dependencies into account. Our

goal is to generalize the dichotomy to fully accommodate FDs.

Towards this goal, we introduce an extension of a query Q according to the FDs. This

is called an FD-extension and denoted Q+. In this extension, each atom, as well as the

head of the query, contains all variables that can be implied by its variables according to

the FDs. This way, instead of classifying every combination of CQ and FDs directly, we

encode the dependencies within the extended query, and use the classification of Q+ to

gain insight regarding Q. This approach draws inspiration from the proof of a dichotomy

in the complexity of deletion propagation, in the presence of FDs [Kim12]. However,

the problem and consequently the proof techniques are fundamentally different.
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The FD-extension is defined in such a way that if Q is satisfied by an assignment,

then the same assignment also satisfies the extension Q+, as the underlying instance is

bound by the FDs. In fact, we can show that enumerating the solutions of Q under

FDs can be reduced to enumerating the solutions of Q+. Therefore, tractability of Q+

ensures that Q can be efficiently solved as well. By using the positive result in the

known dichotomy, Q+ is tractable w.r.t. enumeration if it is free-connex. Moreover, it

can be shown that the structural restrictions of acyclicity and free-connex are closed

under FD-extensions. Hence, the class of all queries Q such that Q+ is free-connex is a

proper extension of the class of free-connex queries. We denote the classes of queries Q

such that Q+ is acyclic or free-connex as FD-acyclic or FD-free-connex, respectively.

To reach a dichotomy, we now need to answer the following question: Is it possible

that Q can be enumerated efficiently even if it is not FD-free-connex? The reduction

by Bagan et al. [BDG07] that shows hardness of CQs over general schemas fails when

dependencies are imposed on the data, as the constructed database instance does not

necessarily satisfy the underlying dependencies. As it turns out, the structure of the

FD-extended query Q+ allows us to extend this reduction to our setting. We establish

a dichotomy by carefully modifying the reduction such that the dependencies hold,

while the construction can still be done within linear time. That is, we show that the

tractability of enumerating the answers of a self-join-free query Q in the presence of FDs

is exactly characterized by the structure of Q+: Given an FD-acyclic query Q, we can

enumerate the answers to Q within the class Enum〈lin, const〉 iff Q is FD-free-connex.

The same results apply also with respect to random permutation and random access if

we consider logarithmic delay.

The resulting extended dichotomy, as well as the original one, brings insight to

the case of acyclic queries. Regarding cyclic CQs, again the hardness proof by Brault-

Baron [BB13] no longer applies in the presence of FDs. Moreover, it is possible for

Q to be cyclic and Q+ acyclic. In fact, Q+ may even be free-connex, and therefore

tractable in Enum〈lin, const〉. We show that, under the same assumptions used by Brault-

Baron [BB13], the evaluation problem for a self-join-free CQ in the presence of unary

FDs where Q+ is cyclic cannot be solved in linear time. As linear time preprocessing

is not enough to achieve the first answer, a consequence is that enumeration within

Enum〈lin, const〉 is impossible in that case. Therefore, random permutation and random

access are impossible as well. This covers all types of self-join-free CQs and shows a full

dichotomy for the case of unary FDs.

The results we present here are not limited to CQs and FDs. CQs with disequalities

are an extension of CQs, allowing to restrict the satisfying assignments and demand

that some pairs of variables map to different values. We prove that our results apply to

the more general query class: CQs with disequalities.

Another way of generalizing our results is not to extend the class of queries, but

the class of dependencies. Cardinality Dependencies (CDs) [CFWY14, AFG16] are a

generalization of FDs, denoted (Ri : A→ B, c). Here, the right-hand side does not have
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to be unique for every assignment to the left-hand side, but there can be at most c

different values to the variables of B for every value of the variables of A. FDs are in

fact a special case of CDs where c = 1. Constraints of that form appear naturally in

many applications. For example: a movie has only a handful of directors, there are at

most 200 countries, and a person is typically limited to at most 5000 friends in (some)

social networks. We show that our results also apply to CDs.

Finally, we show that the utility of FD-extensions does not stop in CQs. Our

enumeration and random permutation algorithms for UCQs can also be applied based

on the structure of the FD-extensions of the CQs in the union.

Enumerating Tree Decompositions

When the queries are neither naturally acyclic nor acyclic via extensions based on

dependencies or unions, linear preprocessing time will not suffice. However, this does not

mean that we must compute the intractable query as is. Consider the graph associated

with our query: a node for every variable and an edge for every atom. Given an input

database and a decomposition of this graph, we can create a database and a matching

acyclic query with the same answers after a non-linear overhead [TR15, GGS05, KEK16].

This approach of compiling the problem into a tractable form and evaluating the new

problem can lead to an order-of magnitude improvement in the time required to evaluate

the query. As the translation overhead depends exponentially on the quality of the

decomposition, we study the task of finding a good decomposition with the query as

input. (In particular, we no longer use data complexity, since the data is not part of

the problem we address.)

More specifically, a tree decomposition extracts a tree structure from a graph

by grouping nodes into bags (each treated as a single node). The corresponding

operation on hypergraphs is that of a generalized hypertree decomposition [GGS05]

that consists of a tree decomposition of the primal graph (which has the same set of

nodes, and an edge between every two hyperedge neighbors), and an assignment of

hyperedge labels (edge covers) to the tree nodes [GGM+05]. Tree decompositions and

generalized hypertree decompositions have a plethora of applications. In addition to the

optimization of join queries in databases, these include containment of database queries,

constraint satisfaction problems [KV00], prediction of RNA secondary structure [ZMC06],

computation of Nash equilibria in games [GGS05], inference in probabilistic graphical

models [LS88], and weighted model counting [KG15].

Past research has focused on obtaining a “good” tree decomposition, where goodness

is typically defined as having low tree width [RS84]—the maximal cardinality of a bag

(minus one). Finding a tree decomposition of the minimal tree width is NP-hard [ACP87],

as is the case for other common measures of goodness for tree decompositions such

as fill [Yan81a], and in the case of hypergraphs hypertree width [GLS02], generalized

hypertree width [GMS09], and fractional hypertree width [Mar10]. Therefore, heuristic
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algorithms are often applied [BBH02, BBH+06]. The different measures of goodness are

motivated by the fact that the needs of different applications are often different from

(though related to) the width. Additional examples are the complexity of weighted model

counting, induced by a parameter associated with the “CNF-tree” of the formula [KG15,

GGM+05], and the effectiveness of adhesions (parent-child intersection) for caching in

terms of dimension and skew [KEK16]. In fact, Kalinsky et al. [KEK16] have illustrated

how, in real-life scenarios, isomorphic tree decompositions of a minimal width may result

in an orders-of-magnitude difference in join performance.

The common approach is to devise a decomposition algorithm (exact, approximate

or heuristic) to capture the desired measure of goodness per application. However, this

is a nontrivial challenge that (to the least) requires high expertise in algorithms and

tree decompositions. We propose an alternative approach—produce a large number of

different tree decompositions, using a baseline decomposition method, and allow the

application at hand to choose the best according to its internal measure function. Our

approach brings together results and techniques from the areas of chordal graphs and

enumeration theory in order to establish a practical tool for enhancing decomposition

algorithms and, by implication, the performance of various inference and optimization

algorithms. Specifically, we explore the task of enumerating all (or a subset of) the

tree decompositions. Such algorithms have been proposed in the past for small graphs

(representing database queries), without complexity guarantees [TR15]. Our main result

is an enumeration algorithm that runs in incremental polynomial time [JPY88], that is,

the time between producing the Nth result and the (N + 1)st result is polynomial in N

and in the size of the input.

We first need to define which tree decompositions should be enumerated, as many

of them are effectively useless. For example, if we take a graph that is already a tree,

we do not wish to enumerate the tree decompositions that group nodes with no reason;

in fact, the tree itself is the only reasonable decomposition in this case. Therefore, we

consider only tree decompositions that cannot be “improved” by removing or splitting

a bag, and we call such tree decompositions proper. As it turns out, the proper tree

decompositions are in a bijective (and efficiently computable) correspondence to the

minimal triangulations of the graph at hand. A triangulation of a graph g is a graph g′

that is obtained from g by adding edges so that g′ is chordal, that is, g′ does not have

any induced simple cycle of more than three nodes. A triangulation is minimal if no

triangulation can be obtained using only a strict subset of the added edges.

So, the problem is reduced to the task of enumerating all of the minimal triangulations

of a graph. The enumeration complexity of this task was an open problem, and we

resolve it in this thesis. We devise an algorithm for performing this task in incremental

polynomial time. Our approach is as follows. Parra and Scheffler [PS97] have shown

that there is a one-to-one correspondence between the minimal triangulations of a graph

g and the maximal independent sets of a special graph G. The nodes of G are the so

called minimal separators of g, and the edges are between crossing minimal separators.
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So, enumerating the minimal triangulations of a graph boils down to enumerating these

maximal sets. It is well known that all the maximal independent sets of a graph can

be enumerated with polynomial delay [JPY88, CKS08]. However, this is insufficient

for us, since the graph G is not given as input, and in fact, its number of nodes can

be exponential in the size of the original graph g. Therefore, we cannot construct this

graph ahead of time, and cannot directly use existing algorithms to establish incremental

polynomial time.

We address this problem by defining an abstraction of the graph G of minimal

separators by means of a Succinct Graph Representation (SGR), which is represented

compactly by two algorithms: one for enumerating the nodes and one for testing whether

a given pair of nodes forms an edge. In particular, we can access the nodes of G through

a polynomial-delay iterator, due to a result by Berry et al. [BBC99] (who show how to

enumerate the minimal separators of a graph). Applying previous results, we prove that

the SGR for the minimal separator graph (i.e., G) meets certain tractability conditions

termed tractable expansion, which enable the enumeration of its maximal independent

sets (i.e., g’s minimal triangulations) in incremental polynomial time in the size of the

representation (which can be logarithmic in the size of the graph itself).

In summary, we reduce the problem of enumerating the proper tree decompositions

to that of enumerating the minimal triangulations, which we reduce to the problem

of enumerating the maximal independent sets of an SGR with tractability properties,

and we devise an algorithm for the latter task. An important feature of the algorithm

is that it can incorporate any black-box procedure for expanding a given independent

set into a maximal one. When applied to enumerating the proper tree decompositions,

such a procedure can be any off-the-shelf algorithm for minimal triangulation or tree

decomposition (e.g., Maximum Cardinality Search [BBH02] and LB-Triang [BBH+06]).

However, our algorithm executes this procedure on different versions of the original graph,

each time with some new edges added. Hence, our algorithm has the potential of using a

high-quality decomposition algorithm for producing many high-quality decompositions,

enabling the user to choose the best one generated according to the specific measures of

her use case (may it be width or anything else).

After establishing our algorithm, we describe an experimental study where we

have tested the ability of the algorithm to utilize the aforementioned triangulation

algorithms. The experimental study covers graphs of a wide range of domains (where

tree decomposition is needed for efficient analysis): join queries (from the TPC-H

collection), Bayesian networks, Markov Random Fields, grids, and random graphs. We

tested the execution time (delay) of the algorithm, its ability to reduce the width or

fill (number of edges added to establish chordality), and the number of decompositions

of the same or better quality (width/fill) compared to that of the original off-the-shelf

algorithm. The results show that, indeed, our algorithm can effectively enhance the

quality of the corresponding decomposition algorithm.
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Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides the required

background and describes the main definitions and notation used throughout the thesis.

In Chapter 3, we study which UCQs can be answered in linear preprocessing time

and constant delay. We then inspect also the tasks of random access and random

permutation and compare them to enumeration in Chapter 4. Chapter 5 studies the

impact of functional dependencies on the results of the previous chapters. In Chapter 6,

we address the task of decomposing queries and propose an algorithm enumerating

tree decompositions. Finally, we conclude this thesis and discuss open problems and

directions for future work in Chapter 7.
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Chapter 2

Preliminaries

This section defines the main concepts used throughout this thesis and presents known

results that we build upon.

2.1 Schemas, Databases and Queries

Databases. A (relational) schema S is a collection R of relation symbols R, each

with an associated arity denoted arity(R). Sometimes the schema also contains a set

∆ of Functional Dependencies (FDs), as defined next. A relation is a set of tuples of

constants, where each tuple has the same arity (length). A database (instance) I over

the schema S associates with each relation symbol R a finite relation, which we denote

by RI , such that arity(R) = arity(RI) and all FDs in ∆ are satisfied.

Functional Dependencies. An FD δ ∈ ∆ has the form R : A → B, where R ∈ R
and A,B ⊆ {1, . . . , arity(R)}. An FD δ = R : A→ B is said to be satisfied in a database

I if, for all tuples u, v ∈ RI that are equal on the indices of A, u and v are equal on the

indices of B. In this thesis, we assume that all FDs are of the form R : A→ b, where

b ∈ {1, . . . , arity(R)}. This is assumed without loss of generality as we can replace an

FD of the form R : A → B where |B| 6= 1 by the set of FDs {R : A → b | b ∈ B}. If

|A| = 1, we say that δ is a unary FD.

Conjunctive Queries. A Conjunctive Query (CQ) Q over a schema S is defined

by an expression of the form Q(~u) ← R1(~v1), . . . , Rn(~vn), where each Ri is a relation

symbol of S, each ~vi is a tuple of variables and constants with the same arity as Ri,

and ~u is a tuple of variables from ~v1, . . . , ~vn. We usually omit the explicit specification

of the schema S, and simply assume that it contains the relation symbols that occur

in the query at hand. Each Ri(~vi) is an atom of Q, and the set of all atoms of Q is

denoted atoms(Q). A homomorphism µ from a CQ Q to a database I is a mapping of

the variables in Q to the constants of I, such that for every atom Ri(~vi) of the CQ, it

holds that µ(~vi) ∈ RI . Each such homomorphism µ yields an answer µ(~u) to Q. Given
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a mapping µ : A → B and a set S ⊆ A, µ|S denotes the restriction (or projection)

of µ to the variables S. To ease notation, we often identify the answer µ(~u) with the

mapping µ|~u. We denote by Q(I) the set of all answers to Q on I.

CQ Notation. We call Q(~u) the head of Q and R1(~v1), . . . , Rn(~vn) the body. We use

var(Q) to denote the set of all variables in Q. The variables in the head are called the

free variables and denoted free(Q), while the variables in the body but not the head

are called existential variables. A CQ with no existential variables is a full join query.

Denote by full(Q) the full version of a CQ Q obtained by adding all variables to the

head of Q. We say that a CQ Q is self-join-free if every relation symbol occurs at most

once. When a CQ is self-join-free, we use var(Ri) to denote the set of variables that

occur in the atom containing Ri.

CQs and Database Instances. Let R(~v) be an atom of a CQ, and let x ∈ ~v. We

say that a tuple ~t ∈ RI assigns x with the value c if for every index i such that ~v[i] = x

we have that ~t[i] = c. Here, ~v[i] is the ith value of ~v. We say that two tuples ~ta,~tb ∈ RI

agree on the value of x if they assign x with the same value. We say that a tuple ~t ∈ RI

agrees with an answer µ|free(Q) ∈ Q(I) if µ(~v) = ~t. A tuple that does not agree with

any answer in Q(I) is called a dangling tuple. A database I is globally consistent with

respect to Q if it contains no dangling tuples [AHV95, Chapter 6.4].

Unions of CQs. A Union of Conjunctive Queries (UCQ) Q is a finite set of CQs,

denoted Q =
⋃`
i=1Qi, where free(Qi) is the same for all 1 ≤ i ≤ `. The set of answers

to Q over a database I is the union Q(I) =
⋃`
i=1Qi(I). Let Q1, Q2 be CQs. A body-

homomorphism from Q2 to Q1 is a mapping h : var(Q2)→ var(Q1) such that for every

atom R(~v) of Q2 we have that R(h(~v)) ∈ Q1. If there exists a body-homomorphism

h from Q2 to Q1 and vice versa, we say that Q1 and Q2 are body-homomorphically

equivalent. We say that two CQs are body-isomorphic is they have the same body up to

a renaming of the variables. As easy observation is that if two CQs are self-join-free and

body-homomorphically equivalent, then they are also body-isomorphic. In this case, a

body-homomorphism between them is also called a body-isomorphism. A homomorphism

from Q2 to Q1 is a body-homomorphism h such that h(free(Q2)) = free(Q1). It is

well known that Q1 ⊆ Q2 iff there exists a homomorphism from Q2 to Q1 [CM77].

We say that a UCQ is non-redundant if it does not contain two different CQs Q1

and Q2 such that there is a homomorphism from Q2 to Q1. We assume that UCQs

are non-redundant; otherwise, an equivalent non-redundant UCQ can be obtained by

removing the redundant CQs.

Query Evaluation Evaluating a query Q means computing the answers Q(I) given a

database I. We denote by Enum∆〈Q〉 the problem of evaluating Q over a schema with

the FDs ∆. The problem Decide∆〈Q〉 is that of determining whether Q has answers.
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Sometimes it is clear from the context that there are no FDs, and we write Decide〈Q〉
and Enum〈Q〉 to denote Decide∅〈Q〉 and Enum∅〈Q〉, respectively.

2.2 Hypergraphs

Hypergraphs and Join Trees. A hypergraph H = (V,E) is a set V of vertices and

a set E of non-empty subsets of V called hyperedges (sometimes edges). A join tree of a

hypergraph H = (V,E) is a tree T where the nodes are the hyperedges of H, and the

running intersection property holds, namely: for all u ∈ V the set {e ∈ E | u ∈ e} forms

a (connected) subtree in T . A hypergraph H is acyclic if there exists a join tree for H
(this is known as α-acyclicity [Fag83]). A hypergraph that is not acyclic is called cyclic.

A hypergraph H′ is an inclusive extension of H if every edge of H appears in H′, and

every edge of H′ is a subset of some edge in H. A tree T is an ext-S-connex tree for a

hypergraph H if: (1) T is a join tree of an inclusive extension of H, and (2) there is a

subtree T ′ of T that contains exactly the vertices S [BDG07].

Paths and Cycles. Two vertices in a hypergraph are neighbors if they appear in

the same edge. A path of H is a sequence of vertices such that every two succeeding

variables are neighbors. The length of a path v1, . . . , vn is n − 1. A simple path of H
is a path where every vertex appears at most once. A chordless path is a simple path

in which no two non-succeeding vertices are neighbors. A cycle is a path that starts

and ends in the same vertex. A simple cycle is a cycle of length 3 or more where every

vertex appears at most once (except for the first and last vertex). A chordless cycle

is a simple cycle such that no two non-succeeding vertices are neighbors and no edge

contains all cycle vertices.

Hypercliques and Tetras. A clique of a hypergraph is a set of vertices that are

pairwise neighbors in H. If every edge in H has k vertices, then we call H k-uniform.

An l-hyperclique in a k-uniform hypergraph H is a set V ′ of l > k vertices, such that

every subset of V ′ of size k forms a hyperedge. A hypergraph H is said to be conformal

if every clique of H is contained in some edge of H. A hypergraph is acyclic iff it is

conformal and contains no chordless cycles [BFMY83]. A tetra of size k, denoted k-tetra,

is a set of k vertices such that every k − 1 of them are contained in an edge, and no

edge contains all k vertices. A hypergraph is cyclic if and only if it contains a chordless

cycle or a tetra [BB13].

2.3 Query Structure

CQ Hypergraph. We associate a hypergraph H(Q) = (V,E) to a CQ Q where the

vertices are the variables of Q, and every hyperedge is a set of variables occurring in
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a single atom of Q. That is, E = {{v1, . . . , vn} | Ri(v1, . . . , vn) ∈ atoms(Q)}. With a

slight abuse of notation, we identify atoms of Q with edges of H(Q).

Acyclicity and Free-Connexity. A CQ Q is said to be acyclic if H(Q) is acyclic,

and it is S-connex if H(Q) has an ext-S-connex tree [BDG07]. Given a CQ Q and a

set S ⊆ var(Q), an S-path is a chordless path (x, z1, . . . , zk, y) in H(Q) with k ≥ 1,

such that x, y ∈ S, and z1, . . . , zk 6∈ S. An acyclic CQ has an S-path iff it is not

S-connex [BDG07]. Given a CQ Q, free-path stands for free(Q)-path and free-connex

stands for free(Q)-connex. A CQ Q is free-connex iff both Q and (V,E ∪ {free(Q)}) are

acyclic [BB13].

2.4 Computational Model

Input. Using data complexity for most of our problems, the input is measured only

by the size of the database instance I (the query and the schema are treated as fixed).

Let I be a database over a schema S = (R,∆). We denote by ||o|| the size of an object

o (i.e., the number of integers required to store it), whereas |o| is its cardinality. We

assume the input database is given by the reasonable encoding suggested by Flum et

al. [FFG02]. Thus, the input is of size ||I|| = 1 + |dom|+ |R|+
∑

R∈R arity(R)|RI | over

integers bounded by max{|dom|,maxR∈R|RI |}. When we say linear time, we mean

that the number of operations is O(||I||).

Cost Measure. We adopt the Random Access Machine (RAM) model with uniform-

cost measure and word length Θ(log(n)) on input of size n [Gra96]. Operations such as

addition of the values of two registers or concatenation can be performed in constant

time. In contrast to the Turing model of computation, the RAM model with uniform-cost

measure can retrieve the content of any register via its unique address in constant time.

As we assume that the word length is Θ(log(||I||)), the values stored in registers are at

most ||I||c for some fixed integer c. As a consequence, and since we assume that the

values may correspond to addresses, the amount of available memory is polynomial in

||I||.

Lookup Tables. The RAM model enables the construction of large lookup tables

that can be queried within constant time. In particular, it is possible to compute the

semi-join of two relations (filtering one relation according to the other) in linear time.

If the available memory is as large as the number of different possible keys, the lookup

table can be as simple as initializing the memory to False, and setting the addresses

matching the keys to be True. Note that the time for initialization is not an issue

due to constant time initialization techniques [MS91]. Solutions such as binary search

trees and hash tables can reduce the memory consumption significantly. For example, a

lookup table based on a binary search tree only requires linear memory in its content
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at the cost of a logarithmic factor to the time. In this thesis, we generally (other than

Sections 3.4.2, 4.4 and 5.4 discussing the space consumption) wish to identify what can

and cannot be done within certain time bounds without restrictions on the memory

consumption. Thus, we assume in our analysis that the available memory is very large

and that we can access lookup tables of polynomial size in constant time.

Sorting. Grandjean [Gra96] proved that sorting strings can be done in timeO(n/ log n),

where n is the size of the input containing strings encoded in some fixed alphabet and

separated by some special symbol, even in the more restrictive DLINRAM model.

This method can be used to sort relations. To construct the input to the sorting

algorithm, we first translate the values from dom to a possibly smaller domain domR,

containing only the values that appear in RI . Note that |domR| ≤ ||RI ||. Then,

we translate these values to binary (since we are required to use a fixed alphabet),

where each value takes log(domR) bits. The size of the input to the sorting problem

is n = ||RI || · log(|domR|) + (|RI | − 1). Therefore, we can sort the tuples of a relation

in time O(n/ log n) = O(||RI ||). That is, it is possible to sort relations within linear

time [SV17].

2.5 Enumeration Complexity

Classic Enumeration Complexity. An enumeration problem P is a collection of

pairs (I, Y ) where I is an input and Y is a finite set of answers for I, denoted by

P (I). An enumeration algorithm for P is an algorithm that, when given an input I,

produces (or prints) a sequence of answers such that every answer in P (I) is printed

precisely once. Johnson, Papadimitriou and Yannakakis [JPY88] introduced several

different notions of efficiency for enumeration algorithms, and we recall these now. Let

A be an enumeration algorithm for a problem P . We say that A runs in: polynomial

total time if the total execution time of A is polynomial in (|I|+ |P (I)|); polynomial

delay if the time between printing every two consecutive answers is polynomial in |I|;
incremental polynomial time if, after printing N answers, the time to print the next

answer is polynomial in (|I|+N).1 The requirements between answers apply also for

the time before the first answer and the time between the last answer and termination.

Observe that polynomial delay implies incremental polynomial time, which, in turn,

implies polynomial total time.

Fine-Grained Enumeration Complexity. Since databases are often very large, we

aim to achieve a stricter time guarantee than that of polynomial delay when enumerating

query answers. Computing the first answer requires at least linear time (to read the input

1The definition of Johnson [JPY88] requires the delay to be polynomial in the size of the input and
the size of the previously produced results (not just their number N as we define here). However, the
definitions are equivalent when the size of each answer is polynomial in that of the input, as in our case.
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and decide whether an answer exists), but sometimes we can achieve a smaller delay

between the subsequent answers. For this reason, we separate the requirement regarding

the time before the first answer from that of the following answers. An enumeration

algorithm A for an enumeration problem P may consist of two phases: preprocessing

and enumeration. During preprocessing, A is given an input I, and it may build data

structures. During the enumeration phase, A can access the data structures built during

preprocessing, and it emits the answers P (I), one by one, without repetitions. We say

that A enumerates with delay td(|I|) if the time between any two consecutive outputs,

as well as the time between the beginning of the enumeration phase and the first output

and the time between the last output and termination are each bounded by td(|I|). We

denote the running time of the preprocessing phase by tp(|I|). The class Enum〈lin, const〉
is defined to contain all enumeration problems that have an enumeration algorithm with

preprocessing tp(|I|) ∈ O(|I|) and delay td(|I|) ∈ O(1). Note that we do not impose a

restriction on the memory used. In particular, such an algorithm may use additional

constant memory for writing between two consecutive answers.

Exact Reductions. Let P1 and P2 be enumeration problems, and denote by I1 and

I2 their sets of possible inputs, respectively. Then, P1(I1) and P2(I2) denote their sets of

possible outputs. There is an exact reduction from P1 to P2, denoted P1 ≤e P2, if there

exist mappings σ : I1 → I2 and τ : P2(I2)→ P1(I1) such that: (1) σ is computable in

time linear in the size of its input; (2) the time to compute τ is constant with respect to

the input to the enumeration problems; and (3) Given any I ∈ I1, τ acts as a bijection

from P2(σ(I)) to P1(I). The notation P1 ≡e P2 means that P1 ≤e P2 and P2 ≤e P1.

An enumeration class C is said to be closed under exact reduction if for every P1 and

P2 with P2 ∈ C and P1 ≤e P2, we have that P1 ∈ C. Bagan et al. [BDG07] proved

that Enum〈lin, const〉 is closed under exact reduction. The same proof holds for any

meaningful enumeration complexity class that guarantees generating all unique answers

with at least linear preprocessing time and at least constant delay between answers.

2.6 Complexity Hypotheses

We define here the known hypotheses used in this thesis. BMM and Hyperclique

were previously used to show the hardness of CQ evaluation.

BMM. BMM states that two Boolean n× n matrices cannot be multiplied in time

O(n2). Boolean matrix multiplication is equivalent to the evaluation of the query

Π(x, y) ← A(x, z), B(z, y) over the schema {A,B} where A,B ⊆ {1, . . . , n}2. The

matrix multiplication exponent ω is the smallest number such that for any ε > 0 there

is an algorithm that multiplies two rational n × n matrices with at most O(nω+ε)

(arithmetic) operations. Currently, the best bound on ω is ω < 2.373 [LG14, AW14].
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sparseBMM sparseBMM assumes that two Boolean matrices A and B, represented

as lists of their non-zero entries, cannot be multiplied in time m1+o(1), where m is the

number of non-zero entries in A, B, and AB. The best known running time for this

problem is O(m4/3) [AP09].

4-clique. 4-clique states that it is not possible to determine the existence of a

4-clique in a graph with n nodes in time O(n3). This is a special case of the k-Clique

Hypothesis [LWW18], which states that detecting a clique in a graph with n nodes

requires n
ωk
3
−o(1) time, where ω is again the matrix multiplication exponent (note that

ω ≥ 2 by its definition).

Hyperclique. Hyperclique states that for all k ≥ 3, it is not possible to determine

the existence of a k-hyperclique in a (k−1)-uniform graph with n nodes in time O(nk−1).

When k = 3, this is the assumption that we cannot detect a triangle in a graph in

O(n2) time [AYZ97]. This assumption is stronger than BMM, as triangle finding can

be reduced to the matrix multiplication problem [WW10]. When k > 3, this is a special

case of the (`, k)− Hyperclique Hypothesis [LWW18], which states that, in a k-uniform

hypergraph of n vertices, nk−o(1) time is required to find a set of ` vertices such that each

of it subsets of size k forms a hyperedge. The Hyperclique hypothesis is sometimes

called Tetra〈k〉 [BB13].

2.7 Complexity of CQ Evaluation

Bagan, Durand and Grandjean [BDG07] showed that the answers to free-connex CQs

can be efficiently enumerated. This result is complemented by conditional lower bounds

that show that other CQs are intractable over general schemas.

Theorem 2.1 ([BDG07, BB13]). Let Q be a self-join-free CQ.

1. If Q is free-connex, then Enum∅〈Q〉 ∈ Enum〈lin, const〉.
2. If Q is acyclic and not free-connex, then Enum∅〈Q〉 6∈ Enum〈lin, const〉, assuming

BMM.

3. If Q is cyclic, then Enum∅〈Q〉 6∈ Enum〈lin, const〉, as Decide∅〈Q〉 cannot be

solved in linear time, assuming Hyperclique.

Tractability. The positive case of this dichotomy can be shown using the Constant

Delay Yannakakis (CDY) algorithm [IUV17], and it is also explained in detail in

Section 4.2 as part of a different proof. Given a database I and an ext-S-connex tree for

a CQ Q, we can compute all projections into S of the homomorphisms from Q to I with

linear preprocessing and constant delay. During preprocessing, we construct a relation

for each node in the tree and apply the classical full reduction by Yannakakis [Yan81b].

The reduction removes all dangling tuples and results in a globally consistent database

with respect to Q. Then, we consider only the subtree of T containing S, and join
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the relations corresponding to this subtree along the tree with constant delay. When

S = free(Q), this computes exactly Q(I). This solution can be applied to any free-connex

CQ, as such a CQ has an ext-free(Q)-connex tree.

Difficult Structures. Every CQ is one of the following: (1) free-connex; (2) acyclic

and not free-connex, and therefore contains a free-path [BDG07]; (3) cyclic, and therefore

contains a chordless cycle or a tetra [BB13]. We call free-paths, chordless cycles and

tetras difficult structures. Hence, every CQ that is not free-connex contains a difficult

structure. The restriction of considering only self-joins-free queries in Theorem 2.1 is

in fact required only for the negative side, and it allows to assign different atoms with

different relations independently to prove hardness. Boolean matrix multiplication can

be encoded in free-paths, and so self-join-free acyclic CQs are intractable assuming

BMM [BDG07]. The detection of hypercliques can be encoded in tetras and chordless

cycles, and so the first answer to self-join-free cyclic CQs cannot be found in linear

time assuming Hyperclique [BB13]. We call a CQ difficult if is self-join-free and it is

cyclic or acyclic not free-connex. As we rely heavily on the proof of hardness for acyclic

non-free-connex CQs, we explain the proof next.

Hardness of Acyclic CQs. The hardness proof [BDG07, Lemma 26] can be seen as

an exact reduction Enum∅〈Π〉 ≤e Enum∅〈Q〉, where Π is the Boolean matrix multipli-

cation query given in Section 2.6. Since Q is acyclic but not free-connex, it contains a

free-path (x, z1, . . . , zk, y). For a given an instance of the matrix multiplication problem,

an instance of Enum∅〈Q〉 is constructed, where the variables x,y and z1, . . . , zk of the

free-path encode the variables x, y and z of Π, respectively. All other variables of Q are

assigned constants. This way, A is encoded by an atom containing x and z1, and B is

encoded by an atom containing zk and y. Atoms containing some zi and zi+1 propagate

the value of z. Since x and y are free, but zi are not, the answers to Q correspond to

those of Π. As no atom of Q contains both x and y, the instance can be constructed in

linear time. Constant delay enumeration for Q following a linear time preprocessing

would result in the computation of the answers of Π in O(n2) time, contradicting BMM.

Example 2.2. Assume we want to compute the multiplication
(

1 1
0 1

)(
0 1
0 1

)
=
(

0 1
0 1

)
. We

can do that via the matrix multiplication query Π(x, y)← A(x, z), B(z, y) with input

AI = {(1, 1), (1, 2), (2, 2)} and BI = {(1, 1), (1, 2)}. The result Π(I) = {(1, 1), (1, 2)}
is exactly the indices of the non-zero entries in the result. This computation can be

encoded into any acyclic non-free-connex CQ. For example, given the CQ Q(x, y, t)←
R1(x, z1), R2(z1, z2), R3(z2, y), R4(y, t), we can set RI1 = {(1, 1), (1, 2), (2, 2)}, RI2 =

{(1, 1), (2, 2)}, RI3 = {(1, 1), (1, 2)}, and RI4 = {(1,⊥), (2,⊥)}. Then, the answers

Q(I) = {(1, 1,⊥), (1, 2,⊥)} represent the mutiplication result. �
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Chapter 3

Answering UCQs with Constant

Delay

In this chapter, we inspect which UCQs can be answered efficiently, with linear prepro-

cessing time and constant delay, in the general case that we can make no assumptions

on the data. In particular, we assume in this chapter that the schema does not con-

tain dependencies. We make no requirements here on the order in which the answers

are enumerated. We define the notion of union extensions, show that all UCQs with

free-connex union extensions are tractable, and that these also include some unions of

intractable CQs. We also prove lower bounds showing that for several classes of UCQs,

free-connex union extensions captures all tractable queries. To address other classes

of UCQs, we define the problem of Unbalanced Triangle Detection, and show a tight

connection between the complexity of this problem and the enumeration hardness for

UCQs that do not admit a free-connex union extension.

This chapter contains joint work with Markus Kröl and Karl Bringmann. Some

of the results presented in this chapter were published in the 38th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems [CK19b], in a paper

that received the best student paper award and was invited for a special issue of the

ACM Transaction on Database Systems (TODS) journal on selected publications from

PODS 2019.

Organization. In Section 3.1, we formalize how CQs within a union can make each

other easier by providing variables to one another, and show that UCQs with free-connex

union extensions are in Enum〈lin, const〉. This implies that UCQs are not required to

contain tractable CQs in order to be tractable themselves. We then set off to inspect

whether our positive results cover all tractable cases. In Section 3.2, we build upon the

known characterization for CQs, and show hardness results for UCQs without tractable

extensions. These results are conditional lower bounds, based on known hypotheses, and

they include the proof that a union of two difficult CQs is not tractable if it does not

have a free-connex union extension. In Section 3.3, we discuss where the previously used
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hypotheses are no longer enough for proving the hardness of UCQs, and we phrase a new

hypothesis on graphs, called Unbalanced Triangle Detection, which is tightly related to

the hardness of UCQs. We show that, assuming this hypothesis alone, all self-join-free

unions of two binary CQs are intractable if they do not admit a free-connex union

extension. On the other direction, if free-connex union extensions capture all tractable

UCQs, this hypothesis necessarily holds. We conclude this chapter by discussing variants

of the problem. In Section 3.4.1, we show that, unlike the case of CQs, allowing for

disequalities in the query affects the enumeration complexity, and we prove tractability

results for UCQs with disequalities. In Section 3.4.2, we provide a short discussion

regarding the setting with restricted space.

3.1 Tractable Cases

In this section, we identify tractable UCQs. Section 3.1.1 discusses unions that contain

only tractable CQs. Section 3.1.2 inspects the requirements of Enum〈lin, const〉 and

proves the Cheater’s Lemma: a tool that allows us to compile several enumeration

algorithms into one. In Section 3.1.3, we introduce the concepts of union extensions

and variable sets that a CQ can supply in order to help the evaluation of another CQ

in the union. We show that UCQs that admit free-connex union extensions are in

Enum〈lin, const〉 in Section 3.1.4.

3.1.1 Unions of Tractable CQs

Using known techniques [Str10, Proposition 2.38], a union of tractable CQs is also

tractable.

Theorem 3.1. Let Q = Q1 ∪ . . . ∪Qn be a UCQ for some fixed n ≥ 1. If all CQs in

Q are free-connex, then Enum〈Q〉 ∈ Enum〈lin, const〉.

Proof. Algorithm 3.1 evaluates a union of two CQs. In case of a union Q =
⋃`
i=1Qi of

more CQs, we can use this recursively by treating the second query as Q2 ∪ . . . ∪Q`.

Algorithm 3.1 Enumerating a union of two tractable CQs [Str10]

1: while a← Q1(I).next() do
2: if a 6∈ Q2(I) then
3: print a
4: else
5: print Q2(I).next()

6: while a← Q2(I).next() do
7: print a

By the end of the run, the algorithm prints Q1(I) \Q2(I) over all iterations of line 3,

and it prints Q2(I) in lines 5 and 7. Line 5 is called Q1(I)∩Q2(I) times, so the command

Q2(I).next() always succeeds there. For free-connex CQs after linear preprocessing
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time, the answers can be enumerated in constant delay, and testing whether a given

mapping is an answer can be done in constant time [BGS20]. Thus, this algorithm runs

within the required time bounds.

The technique presented in the proof of Theorem 3.1 has the advantage that it does

not require more than constant memory available for writing in the enumeration phase.

Alternatively, this theorem is a consequence of Lemma 3.4, which we prove next and

gives us a general approach to compile several enumeration algorithms into one.

3.1.2 The Cheater’s Lemma

In this section, we prove a lemma that is useful to show upper bounds for UCQs even

in cases not covered by Theorem 3.1. To get a clearer notion of what it means for a

problem to be in the class Enum〈lin, const〉, we first define linear partial time.

Definition 3.2 (Linear Partial Time). An algorithm runs in linear partial time if, for

every input x, the time before the nth output is O(|x|+ n).

We claim next that if we relax the requirement of linear preprocessing and constant

delay to allow a constant number of linear delay steps, we get linear partial time.

Proposition 3.3. Let A be an algorithm. If there exist constants a, b and c such that,

on any input x, the time between two successive outputs of A is bounded by a(|x|+n) at

most b times, where n is the number of answers printed up to that point, and bounded

by c otherwise, then A runs in linear partial time.

Proof. Before the nth answer, there are at most b steps with delay larger than constant,

and in these cases the delay is bounded by a(|x|+ n). Thus, the time in which the nth

answer is produced is bounded by ba(|x|+ n) + cn ≤ (ab+ c)(|x|+ n) for every n.

If space is not restricted (as in our case), this relaxation in the phrasing of the re-

quirements does not change the requirements themselves, as we show that any algorithm

that runs in linear partial time can be modified to achieve linear preprocessing and

constant delay. This can be done using the known technique [CS18, Proposition 12] of

delaying the results to regularize the delay. In fact, we can further relax the phrasing

by allowing a constant number of duplicates per answer.

Lemma 3.4 (The Cheater’s Lemma). Let P be an enumeration problem. The following

are equivalent:

1. P ∈ Enum〈lin, const〉.
2. There exist an algorithm A and constants c and d such that: A outputs the

solutions to P , the time before the nth answer is bounded by c(|x|+ n), and every

result is produced at most d times.
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Proof. As any algorithm that runs in linear preprocessing and constant delay also runs

in linear partial time, the direction 1⇒2 is trivial. We now show the opposite direction.

We describe an algorithm A′ that simulates A, stores all generated results to prevent

duplicates and holds back generated results to regularize the delay. A′ maintains a

lookup table containing the results that A generated and a queue containing those that

were not yet printed. Both are initialized as empty. A′ calls A. When A returns a

result, A′ checks the lookup table to determine whether it was found before. If it was

not, the result is added to both the lookup table and the queue. Otherwise, it is ignored.

Since A runs in linear partial time, there exists a constant c such that the nth answer

to A is obtained after c(|x|+ n) operations. A′ first performs c|x| computation steps,

and then after every cd computation steps, it outputs a result from the queue. The

queue is never empty when used: A′ returns its ith result after c|x|+ (cd)i = c(|x|+ di)

computation steps; At this time, A produced at least di results, which contain at least i

unique results. When it is done simulating A′, A outputs all remaining results in the

queue. By definition, A′ operates with linear preprocessing time and constant delay. It

outputs all results of A with no duplicates since, due to the lookup table, every result

enters the queue exactly once.

The Cheater’s Lemma formalizes how much we are allowed to “cheat” in order to

show that a problem can be solved with linear preprocessing and constant delay by

only showing an algorithm with relaxed requirements. To show that a problem is in

Enum〈lin, const〉, it suffices to find an algorithm for this problem where the delay is

usually constant, but it may be linear a constant number of times, and the number of

times every result is produced is bounded by a constant. The allowed linear delay is not

only with respect to the input, but also with respect to the already produced answers.

3.1.3 Union Extensions

As Example 1.2 shows, Theorem 3.1 does not cover all tractable UCQs. We now define

union extensions and address the other cases. We first formalize the way that one CQ

can help with evaluating another CQ in the same union by supplying variables.

Definition 3.5. We say that a CQ Q supplies a set V of variables if there exists S

such that V ⊆ S ⊆ free(Q) and Q is S-connex.

Recall that we define a body-homomorphism between CQs to have the standard

meaning of a homomorphism, but without the restriction on the heads of the queries

(see Section 2.1). The following lemma shows why body-homomorphisms and supplying

variables play an important role in UCQ enumeration. In case a body-homomorphism

from a supplying CQ Q2 to another CQ Q1, we can produce an auxiliary relation that

contains all possible value combinations of the matching variables in Q1. This can be

done efficiently while producing some answers to Q2.
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Lemma 3.6. Let Q2 be a CQ that supplies the variables ~v2. Given an instance I, one

can compute with linear time preprocessing and constant delay a set of mappings M

from free(Q2) to the domain such that:

• M ⊆ Q2(I)

• M can be translated in time O(|M |) to a relation RM such that: for every CQ Q1

with a body-homomorphism h from Q2 to Q1 and for every answer µ1 ∈ full(Q1)(I),

there is the tuple µ1(h(~v2)) ∈ RM .

Proof. According to Definition 3.5, there exists ~v2 ⊆ S ⊆ free(Q2) such that Q2 is S-

connex. Take an ext-S-connex tree T for Q2, and perform the CDY algorithm [IUV17]

on Q2 while treating S as the free-variables. This results in a set N of mappings from

the variables of S to the domain such that N = Q2(I)|S . Note that, as mentioned in

Section 2.7, the CDY algorithm has a preprocessing stage that removes dangling tuples

and guarantees that, at its end, there is a relation for each vertex of the tree such that

each tuple of such a relation agrees with some answer.

For every mapping µ ∈ N , extend it once to obtain a mapping from all variables of

Q2 as follows. Go over all vertices of T starting from the connected part containing S

and treating a neighbor of an already treated vertex at every step. Consider a step where

in its beginning µ is a homomorphism from a set S1, and we are treating an atom R(~v, ~u)

where ~v ⊆ S1 and ~u∩S1 = ∅. We take some tuple in R of the form (µ(~v),~t) and extend µ

into µ+ that also maps ~u to ~t. Such a tuple exists since the dangling tuples were removed.

This extension takes constant time, and in its end we have that µ+|free(Q2) ∈ Q2(I).

Using these extensions, we set M = {µ+|free(Q2) | µ+ is an extension of µ ∈ N}. We

have that M ⊆ Q2(I). We also have that M |S = N = Q2(I)|S , and since ~v2 ⊆ S, this

means that M |~v2 = Q2(I)|~v2 . The mappings M are computed with linear preprocessing

and constant delay as this is the complexity of the CDY algorithm and the manipulations

we describe only require constant time per answer.

We define RM = {µ+(~v2) | µ+ ∈ M}. Since M |~v2 = Q2(I)|~v2 , this is the same as

{µ2(~v2) | µ2 ∈ Q2(I)}. Let Q1 be a CQ such that there is a body-homomorphism h

from Q2 to Q1, and let µ1 ∈ full(Q1)(I). Since h is a body-homomorphism, for every

atom R(~v) in Q2, R(h(~v)) is an atom in Q1. Since µ1 forms an answer to the full

Q1, for every such atom µ1(h(~v)) ∈ RI . This means that µ1 ◦ h|free(Q2) is an answer

to Q2, so there exists µ2 ∈ Q2(I) such that µ1 ◦ h|free(Q2) = µ2. By construction,

µ1(h(~v2)) = µ2(~v2) ∈ RM .

Note that if the mapping h is not a body-homomorphism, Lemma 3.6 does not hold

in general. Here is an example.

Example 3.7. Consider the following slight modification of the UCQ from Example 1.2:

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, y), R2(y, w), R4(y).
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Since R4 is not a relational symbol in Q1, there is no body-homomorphism from Q2

to Q1. If RI4 = dom, then we can take the same approach as in Example 1.2, as the

answers of Q2 form Q1(I)|{x,z,y}. However, if RI4 is smaller, this extra atom may filter

the answers to Q2, and we do not obtain all of Q1(I)|{x,z,y} in general. �

During evaluation, a set of supplied variables can form an auxiliary relation, accessible

by an auxiliary atom. We call the query with its auxiliary atoms a union extension.

Definition 3.8. Let Q = Q1 ∪ . . . ∪Qn be a UCQ. An extension sequence for Q is a

sequence Q1, . . . , QN where Q = Q1 and for all 1 < j ≤ N , Qj is a UCQ of the form

Qj1 ∪ . . . ∪Q
j
n such that the following holds. For some relational symbol Rj that does

not appear in Qj−1 and a sequence ~vj of variables supplied by a previous Q`p(j) (i.e.,

` ≤ j and 1 ≤ p(j) ≤ n) we have the following for all i = 1, . . . , n:

• Qji = Qj−1
i ; or

• there is a body-homomorphism hp(j),i from Q1
p(j) to Q1

i , and Qji is obtained by

adding the atom Rj(hp(j),i(~vj)) to Qj−1
i .

If such an extension sequence exists, we call QN a union extension of Q1. Atoms that

appear in QN but not in Q1 are called virtual atoms.

3.1.4 Extension-Based Tractability

We now claim that if a CQ can be extended to a tractable form via a union extension,

then it can be evaluated efficiently as part of the union.

Theorem 3.9. If Q is a UCQ with a free-connex union extension, then Enum〈Q〉 is

in Enum〈lin, const〉.

Proof. We begin by sketching the proof. For answering Q, we describe an algorithm

A which is comprised of two phases: a provision phase and a final results phase. In

the provision phase, a free-connex union extension is instantiated. In the final results

phase, the answers of every CQ in the union are enumerated via the free-connex union

extension. These answers can be enumerated efficiently using the CDY algorithm (see

Theorem 2.1). We will use Lemma 3.6 to generate some answers to Q during the

provision phase; this permits us to use more than linear time before the final results

phase while still achieving an enumeration algorithm with only linear preprocessing

time. We will use the Cheater’s Lemma (Lemma 3.4) to remove duplicates and obtain

the time bounds we want.

Initial Algorithm. Let Q = Q1∪. . .∪Qn, and take an extension sequence Q1, . . . , QN

where Q1 = Q and QN comprises of free-connex CQs. The provision phase consists

of N − 1 provision steps. Let I = I1 be the input database instance. During the jth

provision step (with 1 < j ≤ N), we extend the database instance Ij−1 into an instance

Ij that matches Qj . We use Lemma 3.6 to generate a set of answers Mj ⊆ Qj−1
p(j)(Ij−1)

30



while also computing a relation RMj . We set (Rj)
Ij := RMj . The other relations remain

as they were; that is, RIj = RIj−1 for every relational symbol in the UCQ except for Rj .

By the end of the provision phase, the algorithm computes an instance IN that matches

QN . Finally, we perform the final results phase where we compute QNi (IN ) for every

Qi in the union using the CDY algorithm.

Correctness. We prove that for all 1 ≤ i ≤ n and 1 ≤ j ≤ N we have that

Qi(I) = Qji (Ij) by induction on j. The base case trivially holds as Qi(I) = Q1
i (I1) by

definition. Now consider the jth provision step. Intuitively, answers to an extended CQ

are by definition all answers to its previous version that agree with some tuple in the new

atom. Since the new atom contains a projection of the answers, the extension has exactly

the same answers as its previous version. More formally, let Qe(j) be a CQ extended in

step j. For every mapping µ, by definition of the extension we have that µ ∈ Qje(j)(Ij)
if and only if both µ ∈ Qj−1

e(j)(Ij−1) and µ(h(~vj)) ∈ R
Ij
j , and these two conditions hold

if and only if µ ∈ Qj−1
e(j)(Ij−1) since for all µ ∈ Qj−1

e(j)(Ij−1) we have that µ(h(~vj)) ∈ R
Ij
j .

This proves that Qje(j)(Ij) = Qj−1
e(j)(Ij−1). This shows that for every Qi in the union,

Qji (Ij) = Qj−1
i (Ij−1). By the induction hypothesis, Qj−1

i (Ij−1) = Qi(I). This concludes

the proof that Qji (Ij) = Qi(I) for all j ≤ N , and in particular, QN (IN ) = Q(I). Since

QN (IN ) = Q(I), the final results phase computes all answers to Q. Since Qi(I) = Qji (Ij)

for all i and j, the mappings generated by Lemma 3.6 during the provision phase are

also answers to Q.

The algorithm A we presented so far produces the results we want, but it is not

a constant delay enumeration algorithm. It is left to show that A conforms to the

conditions of the Cheater’s lemma. This would mean that we can apply the lemma, and

conclude that Enum〈Q〉 ∈ Enum〈lin, const〉.

Duplicates. Overall the algorithm produces answers in N provision steps during

the provision phase and in n CQ evaluation steps during the final results phase. The

answers produced at each individual step contain no duplicates. Therefore, every result

appears at most N + n times. Since N and n are constants, this is a constant number

of duplicates per answer.

Delay. Consider the jth provision step. It starts with a preprocessing of time O(|Ij−1|)
followed by a constant delay enumeration of a set Mj of answers. At its end, O(|Mj |)
time is required to compute the new relation. This means that the delay before the first

answer of the jth provision step is O(|Ij−1|+ |Mj−1|), and the delay before answers in

the provision phase that are not first in their step is constant. During the final results

phase, we have n steps in which we apply the CDY algorithm on an extended CQ.

Each such step starts with O(|IN |) preprocessing time followed by constant delay. Thus,

during the final results phase, there are n times where the delay is O(|IN |), and in other
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Figure 3.1: Ext-{x, y, w}-connex trees for Example 1.2.

times the delay is constant.

We have that |Ij | = |Ij−1|+ |R
Mj

j | ≤ |Ij−1|+ |Mj | for all 1 < j ≤ N , and |I1| = |I|.
By induction, this shows that |Ij | ≤ |I| +

∑j
i=2 |Mi|. This means that whenever the

delay is not constant, it is linear in the input size plus the number of (not necessarily

unique) answers produces thus far. Since there are n+N such times where the delay is

not constant, according to Proposition 3.3, the algorithm A runs in linear partial time,

and the requirements of the Cheater’s Lemma on the delay are met.

We can now revisit Example 1.2 and explain its tractability using the terminology

and results introduced in this section. The query Q2 supplies {x, y, w} ⊆ free(Q2) as

Q2 is {x, y, w}-connex. There is a body-homomorphism h : var(Q2) → var(Q1) with

h((x, y, w)) = (x, z, y). As illustrated in Figure 3.1, adding R′(x, z, y) to Q1 results in

a free-connex union extension Q+
1 (x, y, w)← R1(x, z), R2(z, y), R3(y, w), R′(x, z, y). By

Theorem 3.9, we have that Enum〈Q〉 ∈ Enum〈lin, const〉.

Remark. Example 1.2 is a counter example to a past made claim [BKS18, Theorem

4.2b]. The claim is that if a non-redundant UCQ contains an intractable CQ, then the

union is intractable. In contrast, none of the CQs in Example 1.2 is redundant, Q1 is

intractable, and yet the UCQ is tractable.

The intuition behind the proof of the past claim is reducing the hard CQ Q1 to Q.

This can be done by assigning each variable of Q1 with a different and disjoint domain

(e.g., by concatenating the variable names to the values in the relations corresponding

to the atoms), and leaving the relations that do not appear in the atoms of Q1 empty.

It is well known that Q1 ⊆ Q2 if and only if there exists a homomorphism from Q2 to

Q1. The claim is that since there is no homomorphism from another CQ in the union

to Q1, then there are no answers to the other CQs with this reduction. However, it is

possible that there is a body-homomorphism from another CQ to Q1 even if it is not a

full homomorphism (the free variables do not map to each other). Therefore, in cases of

a body-homomorphism, the reduction from Q1 to Q does not work. In such cases, the

union may be tractable, as we show in Theorem 3.9. In Lemma 3.12, we use the same

proof described here, but restrict it to UCQs where there is no body-homomorphism

from other CQs to Q1. �

The tractability result in Theorem 3.9 is based on the structure of the union

extensions. This means that the intractability of any query within a UCQ can be

resolved as long as another query can supply the right variables. The following example
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shows that this can even be the case for a UCQ only consisting of non-free-connex CQs.

It also illustrates why the definition of union extensions needs to be recursive.

Example 3.10. Let Q = Q1 ∪Q2 ∪Q3 with

Q1(x, y, v, u)←R1(x, z1), R2(z1, z2), R3(z2, z3), R4(z3, y), R5(y, v, u),

Q2(x, y, v, u)←R1(x, y), R2(y, v), R3(v, z1), R4(z1, u), R5(u, t1, t2),

Q3(x, y, v, u)←R1(x, z1), R2(z1, y), R3(y, v), R4(v, u), R5(u, t1, t2).

Each of three CQs is difficult on its own: Q1 has the free-path (x, z1, z2, z3, y), while

Q2 has the free-path (v, z1, u), and Q3 has the free-path (x, z1, y). The CQ Q2 supplies

{x, y, v} as Q2 is {x, y, v}-connex and {x, y, v} are free in Q2. Since there is a body-

homomorphism h2,3 from Q2 to Q3 with h2,3((x, y, v)) = (x, z1, y), we can extend the

body of Q3 by the virtual atom R′(x, z1, y), which yields a free-connex extension Q+
3 of

Q3. Similarly, we have that Q3 supplies {y, v, u}, and there is a body-homomorphism

h3,2 from Q3 to Q2 with h3,2((y, v, u)) = (v, z1, u). Extending Q2 by R′′(v, z1, u) yields

the free-connex extension Q+
2 . Since Q+

2 and Q+
3 each supply {x, y, v, u}, we can add

virtual atoms with the variables (x, z1, z2, y) and (x, z2, z3, y) to Q1. This results in a

free-connex extension Q+
1 . The UCQ Q+

1 ∪Q
+
2 ∪Q

+
3 is a free-connex union extension of

Q. By Theorem 3.9, Enum〈Q〉 ∈ Enum〈lin, const〉. �

3.2 Hardness under Traditional Assumptions

In this section, we prove lower bounds for evaluating UCQs within the time bounds

of Enum〈lin, const〉. Since for CQs we currently only have hardness result when they

are self-join free, we focus on unions of self-join-free CQs. We begin with some general

observations regarding cases where a UCQ is at least as hard as a single CQ it contains,

and then continue to handle other cases. In Section 3.2.1 we discuss unions containing

only difficult CQs, and in Section 3.2.2 we discuss unions containing two body-isomorphic

CQs. In both cases such UCQs may be tractable, and in case of such a union of size

two, we show that our results from Section 3.1 capture all tractable unions.

In order to provide some intuition for the choices we make throughout this section,

we first explain where the approach used for proving the hardness of single CQs

fails for UCQs. Consider the union of Q1(x, y, w) ← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, y), R2(y, w) from Example 1.2. Recall that the original proof that

shows that Q1 is hard describes a reduction from Boolean matrix multiplication. Given

binary representations A and B of Boolean n × n matrices, the reduction defines a

database instance I as RI1 = A, RI2 = B, and RI3 = {1, . . . , n} × {⊥}. Then, Q1(I)

corresponds to the answers of AB. If Enum〈Q1〉 ∈ Enum〈lin, const〉, we can solve matrix

multiplication in time O(n2), in contradiction to BMM. Since Q2 evaluates over the

same relations, Q2 also produces answers over this construction. Since the number of

answers for Q2 might reach up to n3, evaluating Q in constant delay does not necessarily

compute the answers to Q1 in O(n2) time and does not contradict our assumption.
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In general, whenever we show a lower bound to a UCQ by computing a hard problem

through answering one CQ in the union, we need to ensure that the other CQs cannot

have too many answers over this construction. The following lemma formalizes the idea

that by assigning variables of a CQ with different domains, we can restrict the answers

obtained by other CQs.

Lemma 3.11. Given a CQ Q1 over a schema S, there exist mappings σ and τ such

that for every database instance I over S:

• τ is a bijection from Q1(σ(I)) to Q1(I).

• σ(I) can be computed in linear time.

• For every CQ Qi over S:

– τ(µ) can be computed in constant time for every answer µ ∈ Qi(σ(I)).

– If there is no body-homomorphism from Qi to Q1, Qi(σ(I)) = ∅.
– If there is no homomorphism from Qi to Q1, given µ ∈ Q1(σ(I)) ∪Qi(σ(I)),

it is possible to determine in constant time whether µ ∈ Q1(σ(I)).

Proof. We define σ to assign each variable of Q1 with a different and disjoint domain

by concatenating the variable names to the values in their corresponding relations.

For every atom R(v1, · · · , vm) in Q1 and tuple (c1, · · · , cm) ∈ RI , we add the tuple

((c1, v1), . . . , (cm, vm)) to Rσ(I). All relations that do not appear in Q1 are left empty.

We claim that the results of Q1 over the original instance are exactly the same as over our

construction if we omit the variable names. That is, we define τ : dom×var(Q1)→ dom

as τ((c, v)) = c, and show that Q1(I) = τ(Q(σ(I))). Note the σ and τ can be computed

in linear and constant time respectively.

We first prove that Q1(I) = τ(Q1(σ(I))). The first direction is trivial: if ν|free(Q1) ∈
Q1(σ(I)), then for every atom R(~v) in Q1, ν(~v) ∈ Rσ(I). By construction, τ(ν(~v)) ∈
RI , and therefore τ ◦ ν|free(Q1) ∈ Q1(I). We now show the opposite direction. If

µ|free(Q1) ∈ Q1(I), then for every atom R(v1, · · · , vm) in Q1, (µ(v1), . . . , µ(vm)) ∈ RI .
By construction, ((µ(v1), v1), . . . , (µ(vm), vm)) ∈ Rσ(I). By defining fµ : var(Q1) →
dom × var(Q1) as fµ(u) = (µ(u), u), we have fµ ∈ Q1(σ(I)). Since τ ◦ fµ = µ, we have

that µ|free(Q1) ∈ τ(Q1(σ(I))), and this concludes that Q1(I) ⊆ τ(Q1(σ(I))).

We now show that Qi(σ(I)) = ∅ if there is no body-homomorphism from Qi to Q1.

Assume by contradiction that there exists such µ|free(Qi) ∈ Qi(σ(I)). This means that

for every atom R(~v) in Qi, µ(~v) ∈ Rσ(I). By construction, µ(~v), like all tuples in Rσ(I),

is of the form ((c1, v1), . . . , (cm, vm)) such that R(v1, . . . , vm) is an atom in Q1. Define

η : dom × var(Q1)→ var(Q1) as η(c, v) = v. We have that for every atom R(~v) in Qi,

R(η(µ(~v))) is an atom in Q1. This means that η ◦ µ is a body-homomorphism from Qi

to Q1, which is a contradiction.

It is left to show that, if there is no homomorphism from Qi(~u) to Q1(~u), given an

answer to Q1(σ(I)) ∪Qi(σ(I)), it is possible to determine in constant time whether it

is in Q1(σ(I)). Here, we need to be more careful, so we use the definition of an answer

as a tuple (rather than a mapping). As we showed, Qi has answers over σ(I) only if
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there is a body-homomorphism h from it to Q1. Since this is not a full homomorphism,

h(~u) 6= ~u. If ~a is an answer to Q1, then η(~a) = ~u. Otherwise, if ~a is an answer to Qi,

then η(~a) = h(~u). Since h(~u) 6= ~u, this helps us distinguish the answers: apply η on the

answer; if this results in ~u, then it is an answer to Q1; otherwise, µ is an answer to Qi.

The following lemma identifies cases where we can encode any arbitrary instance

of a CQ to an instance of the union containing it, such that no other CQ in the union

returns answers.

Lemma 3.12. Let Q be a UCQ, and let Q1 ∈ Q such that for all Qi ∈ Q \ {Q1} there

is no body-homomorphism from Qi to Q1. Then, Enum〈Q1〉 ≤e Enum〈Q〉.

Proof. This reduction can be performed using the mappings σ and τ defined in

Lemma 3.11. For every Qi ∈ Q \ {Q1}, there is no body-homomorphism from Qi

to Q1, and so Qi(σ(I)) = ∅. We now have that τ(Q(σ(I))) =
⋃
Qi∈Q τ(Qi(σ(I))) =

τ(Q1(σ(I))). Since also τ(Q1(σ(I))) = Q1(I), this concludes our reduction.

The lemma above implies that if there is a difficult CQ in a union where no other

CQ maps to it via a body-homomorphism, then the entire union is intractable. This

also captures cases such as a union of CQs where one of them is hard, and the others

contain a relation that does not appear in the hard CQ.

Using the same reduction, a similar statement with relaxed requirements can be

made in case it is sufficient to consider the decision problem, denoted Decide〈Q〉, that

determines whether the answer is non-empty (see definition in Section 2.1).

Lemma 3.13. Let Q be a UCQ, and let Q1 ∈ Q such that for all Qi ∈ Q, either there

exists no body-homomorphism from Qi to Q1, or Q1 and Qi are body-isomorphic. Then,

Decide〈Q1〉 ≤ Decide〈Q〉 via a linear-time many-one reduction.

Proof. We use the encoding from Lemma 3.11. We know that Qi(σ(I)) = ∅ for every

CQ Qi with no body-homomorphism to Q1. We claim now that a CQ Qj which is

body-isomorphic to Q1 has an answer iff Q1 has an answer. Therefore Q(σ(I)) 6= ∅ iff

Q1(σ(I)) 6= ∅. We know that Q1 retains the same answers under this encoding, so in

particular Q1(σ(I)) = ∅ if and only if Q1(I) = ∅. Overall this shows that Q(σ(I)) 6= ∅
if and only if Q1(I) 6= ∅.

We now show formally that for body-isomorphic CQs Q1 and Q2 and database I,

Q1(I) 6= ∅ iff Q2(I) 6= ∅. Let h be a body-homomorphism from Q2 to Q1. That is,

for every atom R(~v) ∈ Q2, we have R(h(~v)) ∈ Q1. If Q1(I) 6= ∅, then there exists

µ|free(Q1) ∈ Q1(I), and for every atom R(h(~v)) ∈ Q1, we have µ(h(~v)) ∈ RI . This means

that µ ◦ h is a homomorphism from Q2 to I, and µ ◦ h|free(Q2) ∈ Q2(I). So, Q2(I) 6= ∅.
Since there is also a body-homomorphism from Q1 to Q2, we can show in the same way

that if Q2(I) 6= ∅ then Q1(I) 6= ∅.

35



Theorem 2.1 states that deciding whether a cyclic CQ has any answers cannot be done

in linear time (assuming Hyperclique). Following Lemma 3.13, if a UCQ Q contains a

cyclic Q1, and the conditions of Lemma 3.13 are satisfied with respect to this CQ, then

the entire union cannot be decided in linear time, and thus Enum〈Q〉 6∈ Enum〈lin, const〉.

3.2.1 Unions of Difficult CQs

We now discuss unions containing only CQs classified as hard according to Theorem 2.1.

Recall that these are called difficult CQs, and they are self-join-free CQs that are not

free-connex. The following lemma identifies a CQ on which we can apply Lemma 3.12

or Lemma 3.13.

Lemma 3.14. Let Q be a UCQ. There exists a query Q1 ∈ Q such that for all Qi ∈
Q either there is no body-homomorphism from Qi to Q1 or Q1 and Qi are body-

homomorphically equivalent.

Proof. Consider a longest sequence (Q1, . . . , Qm) of CQs from Q such that for every

2 ≤ j ≤ m there is a body-homomorphism from Qj to Qj−1, but no body-homomorphism

in the opposite direction. We claim that Q1 = Qm satisfies the conditions of the lemma.

First we show that such a sequence exists. We denote the body-homomorphism from

Qj to Qj−1 by hj . It is not possible that the same query appears twice in the sequence:

if Qi = Qj where j > i, then there is a mapping hi+2 ◦ . . . ◦ hj from Qj = Qi to Qi+1,

in contradiction to the definition of the sequence. Therefore, m ≤ |Q|, and a longest

sequence exists. We now show that Qm satisfies the requirements. First consider some

Qj ∈ {Q1, . . . , Qm−1}. There is a body-homomorphism from Qm to Qj which is the

composition hj+1 ◦ . . . ◦ hm. Therefore, either there is no body-homomorphism from

Qj to Qm, or Qm and Qj are body-homomorphically equivalent. In addition, Qm is

body-homomorphically equivalent to itself with the identity mapping serving as the

body-homomorphisms. It is left to consider CQs that are not on the sequence. Let

Qi ∈ Q \ {Q1, . . . , Qm}. If there is no body-homomorphism from Qi to Qm, then we

are done. Otherwise, if there is also no body-homomorphism from Q1 to Qm, then

(Q1, . . . , Qm, Qi) is a longer sequence, contradicting the maximality of the sequence we

started with. Therefore, in this case, Qm and Qi are body-homomorphically equivalent.

Overall we showed that for each query in Q either there is no body-homomorphism

from this query to Qm or these two CQs are body-homomorphically equivalent.

Using the results obtained so far, we deduce a characterization of all cases of a union

of difficult CQs, except those that contain a pair of body-isomorphic acyclic CQs.

Theorem 3.15. Let Q be a union of difficult CQs not containing two body-isomorphic

acyclic CQs. Then, Q 6∈ Enum〈lin, const〉, assuming BMM and Hyperclique.

Proof. Let Q1 be a CQ in Q given by Lemma 3.14. By definition, difficult CQs are

self-join-free, and so if two CQs in Q are body-homomorphically equivalent, they are
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also body-isomorphic. We treat the two possible cases of the structure of Q1. In case Q1

is acyclic, since we know that Q does not contain body-isomorphic acyclic CQs, then

for all Qi ∈ Q \ {Q1} there is no body-homomorphism from Qi to Q1. According to

Lemma 3.12, Enum〈Q1〉 ≤e Enum〈Q〉. Since Q1 is self-join-free acyclic non-free-connex,

we have that Enum〈Q1〉 6∈ Enum〈lin, const〉 assuming BMM. Therefore Enum〈Q〉 is

not in Enum〈lin, const〉 either. In case Q1 is cyclic, we use Lemma 3.13 to conclude

that Decide〈Q1〉 ≤ Decide〈Q〉. According to Theorem 2.1, since Q1 is self-join-free

cyclic, Decide〈Q1〉 cannot be solved in linear time assuming Hyperclique. Therefore

Decide〈Q〉 cannot be solved in linear time either, and Enum〈Q〉 6∈ Enum〈lin, const〉.

In the next example, we demonstrate how the reductions described in Lemma 3.13

and Theorem 2.1 combine in Theorem 3.15.

Example 3.16. Consider the UCQ Q = Q1 ∪Q2 ∪Q3 with

Q1(x, y)← R1(x, y), R2(y, u), R3(x, u),

Q2(x, y)← R1(y, v), R2(v, x), R3(y, x),

Q3(x, y)← R1(x, z), R2(y, z).

The queries Q1 and Q2 are cyclic, and Q3 is acyclic but not free-connex. This union

is intractable according to Theorem 3.15. Note that Q1 and Q2 are body-isomorphic,

but there is no body-homomorphism from Q3 to Q1. The proof of Theorem 2.1 states

the following: if Enum〈Q1〉 ∈ Enum〈lin, const〉, then given an input graph G, we can

use Q1 to decide the existence of triangles in G in time O(n2), in contradiction to

Hyperclique. The same holds true for Enum〈Q〉. For every edge (u, v) in G with

u < v we add ((u, x), (v, y)) to RI1, ((u, y), (v, z)) to RI2 and ((u, x), (v, z)) to RI3. The

query detects triangles: for every triangle a, b, c in G with a < b < c, the query Q1

returns ((a, x), (b, y)). The union only returns answers corresponding to triangles:

• For every answer ((d, x), (e, y)) to Q1, there exists some f such that d, e, f is a

triangle in G with d < e < f .

• For every answer ((g, z), (h, x)) to Q2, there exists some i such that g, h, i is a

triangle in G with h < i < g.

• The query Q3 returns no answers over I. �

Theorem 3.15 does not cover the case of a UCQ containing acyclic non-free-connex

queries with isomorphic bodies. We handle such queries next. Since this requires a more

intricate analysis, we restrict ourselves to such unions of size two.

3.2.2 Unions of Two Body-Isomorphic CQs

To complete our hardness results from the previous section, we now consider a set of

self-join-free body-isomorphic CQs. As all of the CQs in such a set have the same

structure, either every CQ in this set is cyclic, or every CQ is acyclic. In the case of

a union of two cyclic CQs, the UCQ is intractable according to Theorem 3.15. So in
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this section, we discuss the union of body-isomorphic acyclic CQs. Unlike the previous

section, we do not restrict ourselves in the following discussion to difficult CQs. We

first introduce a new notation for body-isomorphic UCQs that we use hereafter.

Consider a union of self-join-free CQs of the form Q1 ∪ Q2, where there exists a

body-isomorphism h from Q2 to Q1. That is, the CQs have the structure:

Q1(~v1)← R1(h(~w1)), . . . , Rn(h(~wn)),

Q2(~v2)← R1(~w1), . . . , Rn(~wn).

Applying h−1 to the variables of Q1 does not affect evaluation, so we can rewrite Q1

as Q1(h−1(~v1))← R1(~w1), . . . , Rn(~wn). Since now the two CQs have exactly the same

body, we can treat the UCQ as a query with one body and two heads:

Q1(h−1(~v1)), Q2(~v2)← R1(~w1), . . . , Rn(~wn)

We use this notation from now on for UCQs containing only body-isomorphic CQs.

Note that when treating a UCQ as one CQ with several heads, we can use the notation

atoms(Q), as the atoms are the same for all CQs in the union, and the notation free(Qi),

as the free variables may differ between different queries Qi in the union. With this

notation at hand, we now inspect some examples of two body-isomorphic acyclic CQs.

Example 3.17. Consider Q = Q1 ∪Q2 with

Q1(x, y, v)← R1(x, z), R2(z, y), R3(y, v), R4(v, w) and

Q2(x, y, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x).

Since Q1 and Q2 are body-isomorphic, Q can be rewritten as

Q1(w, y, z), Q2(x, y, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x)

In this case we can use the same approach used for single CQs in Theorem 2.1, and

show that this UCQ is not in Enum〈lin, const〉 assuming BMM. Let A and B be binary

representations of Boolean n× n matrices. Define a database instance I with RI1 = A,

RI2 = B, RI3 = {1, . . . , n}×{⊥} and RI4 = {(⊥,⊥)}. Q1(I) corresponds to the answers of

AB, and |Q2(I)| = O(n2). Assume by contradiction that Enum〈Q〉 ∈ Enum〈lin, const〉.
Then we find Q(I) in O(n2) time. We can distinguish the answers of Q1 from those of

Q2 since the possible assignments to the variables in different queries are from disjoint

domains: given an answer µ ∈ Q(I), we have that µ ∈ Q1(I) if and only if µ(v) = ⊥
(or, in tuple notation, the answer is in Q1 iff its last element is ⊥). This means we can

solve matrix multiplication in time O(n2), which contradicts BMM. �

A union of two difficult body-isomorphic acyclic CQs may also be tractable. In fact,

by adding a single variable to the heads in Example 3.17, it becomes tractable.

Example 3.18. Let Q be the UCQ

Q1(w, y, x, z), Q2(x, y, w, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x)

Both CQs are acyclic non-free-connex. As Q2 supplies the variables {v, w, y} and Q1

supplies {x, y, z}, both CQs have free-connex union extensions:

Q+
1 (w, y, x, z)← R1(w, v), R2(v, y), R3(y, z), R4(z, x), P1(v, w, y),

Q+
2 (x, y, w, v)← R1(w, v), R2(v, y), R3(y, z), R4(z, x), P2(x, y, z).
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Figure 3.2: In Example 3.19, µ(w, x, y, z) ∈ Q(I) forms a 4-clique where one edge might
be missing.

By Theorem 3.9, Enum〈Q〉 ∈ Enum〈lin, const〉. �

Intuitively, the reason the reduction of Example 3.17 fails in Example 3.18 is the

fact that all the variables of the free-paths in one CQ, which are used to encode matrix

multiplication, are free in the other CQ. Indeed, if we encode matrices A and B to the

relations of the free path w, v, y in Q1, there can be n3 answers to Q2. The answer set

in this case is too large to contradict the assumed lower bound for matrix multiplication.

As it turns out, there are cases where we cannot reduce matrix multiplication to a union

in this manner, and yet we can show that it is intractable using an alternative problem.

Example 3.19. Let Q be the UCQ

Q1(x, y, u), Q2(x, y, z)← R1(x, u, z), R2(y, u, z).

This union is intractable under the 4-clique assumption. For a given graph G = (V,E)

with |V | = n, we compute the set T of all triangles in G in time O(n3). Define a database

instance I as RI1 = RI2 = T . For every output µ|free(Qi) in Q(I) with i ∈ {1, 2}, we know

that (µ(x), µ(u), µ(z)) and (µ(y), µ(u), µ(z)) are triangles. If µ(x) 6= µ(y), this means

that µ((x, y)) ∈ E if and only if (µ(x), µ(y), µ(u), µ(z)) forms a 4-clique (see Figure 3.2).

Moreover, for every 4-clique (a, b, c, d) in the graph, we have (a, b, c) ∈ Q1(I), so this will

detect all 4-cliques. Since there are O(n3) answers to Q, if Enum〈Q〉 ∈ Enum〈lin, const〉,
we can check whether µ((x, y)) ∈ E for every answer in Q(I) (in tuple notation, for

every answer we check whether its first two elements share an edge), and determine

whether a 4-clique appears in G in time O(n3). �

Note that we can use the 4-clique assumption in Example 3.19, since, in addition

to the free-path variables, there is another variable in both free-path relations. We now

generalize the observations from the examples.

Definition 3.20. Let Q = Q1 ∪Q2 be a UCQ where Q1 and Q2 are body-isomorphic.

• Q1 is said to be free-path guarded if for every free-path P in Q1, we have that

var(P ) ⊆ free(Q2).

• Consider a path P = (u1, . . . uk) in Q1. Two atoms R1(~v1) and R2(~v2) of Q1

are called subsequent P -atoms if {ui−1, ui} ⊆ ~v1 and {ui, ui+1} ⊆ ~v2 for some

1 < i < k.

• Q1 is said to be bypass guarded if for every free-path P in Q1 and variable u that

appears in two subsequent P -atoms, we have that u ∈ free(Q2).
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Note that every free-connex CQ is trivially free-path guarded and bypass guarded.

Let us demonstrate the definitions on the recent examples. The CQ Q1 of Exam-

ple 3.18 is both free-path guarded and bypass guarded: the only free-path it contains is

P = (w, v, y), and Q1 is free-path guarded since {w, v, y} ⊆ free(Q2); the only subse-

quent P -atoms are R1(w, v) and R2(v, y), and Q1 is bypass guarded since v ∈ free(Q2).

The query Q1 of Example 3.17 is not free-path guarded as the variables of the free-path

P ′ = (w, v, y) of Q1 are not contained in free(Q2). The query Q1 of Example 3.19 is

not bypass guarded. Consider the free-path P ′′ = (x, z, y) of Q1. The atoms R1(x, u, z)

and R2(y, u, z) are subsequent P ′′ atoms. Since u is contained in both atoms but not in

free(Q2), we have that Q1 is not bypass guarded.

In the following two lemmas, we prove that if some CQ in a union is either not

free-path guarded or not bypass guarded, then the UCQ is intractable. As in the

characterization for CQs in Theorem 2.1, our lower bounds apply only when the CQs are

self-join-free; with this restriction, we can assign different atoms with different relations.

The next lemma shows that the reduction in Example 3.17, where we can use the fact

that Q1 is not free-path guarded to compute matrix multiplication, can be constructed

in the general case as well.

Lemma 3.21. Let Q = Q1 ∪ Q2 be a non-redundant union of self-join-free body-

isomorphic acyclic CQs. Assuming BMM, if Q1 is not free-path guarded, then Enum〈Q〉
is not in Enum〈lin, const〉.

Proof. Let A and B be Boolean n × n matrices represented as binary relations, i.e.

A ⊆ {1, . . . , n}2, where (a, b) ∈ A means that the entry in the ath row and bth column

is 1. Further let P = (z0, . . . , zk+1) be a free-path in Q1 that is not guarded, and

let i be the minimal index such that zi 6∈ free(Q2). We assign the path variables to

three roles as follows. If 0 < i < k + 1, we define Vx = {z0, . . . , zi−1}, Vz = {zi} and

Vy = {zi+1 . . . , zk+1}. Otherwise (if i is 0 or k+1), we define Vx = {z0}, Vz = {z1, . . . , zk}
and Vy = {zk+1}. Note that, in both cases, there exists some α ∈ {x, y, z} such that

Vα ∩ free(Q2) = ∅. Intuitively that means that some role is not guarded. Note also that

since P is chordless and k ≥ 1, there is no atom in Q that contains both a variable

from Vx and a variable from Vy. Thus we can partition the atoms into nonempty sets

RA = {R(~v) ∈ atoms(Q) | Vy ∩ ~v = ∅} and RB = atoms(Q) \ RA, and we have that

the atoms of RA do not contain variables of Vy, and the atoms of RB do not contain

variables of Vx.

Given three values (a, b, c) we define a function τ(a,b,c) : var(Q) → {a, b, c,⊥} that

assigns every variable with the value corresponding to its role:

τ(a,b,c)(v) =


a if v ∈ Vx,
b if v ∈ Vz,
c if v ∈ Vy,
⊥ otherwise,
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For a vector ~v, we denote by τ(a,b,c)(~v) the vector obtained by element-wise application

of τ(a,b,c). We define a database instance I over Q as follows: For every atom R(~v),

if R(~v) ∈ RA we set RI = {τ(a,b,⊥)(~v) | (a, b) ∈ A}, and if R(~v) ∈ RB we set RI =

{τ(⊥,b,c)(~v) | (b, c) ∈ B}. Note that every relation is defined only once since RA and RB
are disjoint and Q is self-join-free.

Consider an answer µ ∈ Q(I). In the case that 0 < i < k + 1, we have that

µ(z0) = · · · = µ(zi−1) = a, µ(zi) = b and µ(zi+1) = · · · = µ(zk+1) = c for some

(a, b) ∈ A and (b, c) ∈ B, and in case that i ∈ {0, k + 1}, we have that µ(z0) = a,

µ(z1) = · · · = µ(zk) = b and µ(zk+1) = c for some (a, b) ∈ A and (b, c) ∈ B. This is

since the variables zi are connected via the path in both CQs. In either case, µ(free(Q1))

is a tuple only containing the values a, c and ⊥. So the answers to Q1 represent the

answer to the matrix multiplication task we started with. We now need to verify that

the answers to Q2 do not interfere with the reduction. If 0 < i < k + 1, µ(free(Q2)) is

a tuple only containing the values {a, c,⊥}; if i = 0, it only contains {b, c,⊥}; and if

i = k+ 1, it only contains {a, b,⊥}. Thus the number of answers to Q is at most of size

2n2. Assume by contradiction that we can enumerate the solutions of Q(I) with linear

preprocessing and constant delay. To distinguish the answers of Q1 from those of Q2,

we can concatenate the variable names to the values, as described in Lemma 3.11. That

way, we can ignore the answers that correspond to the values (a, b) or (b, c), and use the

(a, c) pairs as the answers to matrix multiplication. This solves matrix multiplication in

O(n2) time, in contradiction to BMM.

In Example 3.19, we encounter a UCQ where both CQs are free-path guarded, but

Q1 is not bypass guarded. We can encode 4-clique in every UCQ with this property.

Lemma 3.22. Let Q = Q1 ∪ Q2 be a non-redundant union of self-join-free body-

isomorphic acyclic CQs. If Q1 and Q2 are free-path guarded and Q1 is not bypass

guarded, then Enum〈Q〉 is not in Enum〈lin, const〉, assuming 4 -clique.

Proof. Let G = (V,E) be a graph with |V | = n. We show how to solve the 4-

clique problem on G in time O(n3) if Enum〈Q〉 is in Enum〈lin, const〉. Let P be a

free-path in Q1 and let u 6∈ free(Q2) such that u appears in two subsequent P-atoms.

We first claim that, under the conditions of this lemma, P is of length 2. Let

P = (z0, . . . , zk+1) and 1 ≤ i ≤ k such that {u, zi−1, zi} and {u, zi, zi+1} are contained

in edges of H(Q). As P is chordless, there is no edge containing {zi−1, zi+1} , thus the

path (zi−1, u, zi+1) is a chordless path. As Q1 is free-path guarded, zi−1, zi+1 ∈ free(Q2)

and since u 6∈ free(Q2), this is a free-path of Q2. Since Q2 is free-path guarded we

have that zi−1, zi+1 ∈ free(Q1). Since P is a free-path in Q1, the only variables of P

that are free in Q1 appear in the edges of the path, and so i = k = 1, and P is of the

form (z0, z1, z2). Therefore, there exist atoms R1 and R2 with {z0, z1, u} ⊆ var(R1) and

{z1, z2, u} ⊆ var(R2).
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Given three values (a, b, c) we define a function τ(a,b,c) : var(Q)→ {a, b, c} as follows:

τa,b,c(v) =


a if v ∈ {z0, z2},
b if v = z1,

c if v = u,

⊥ otherwise.

For every atom R(~v) ∈ atoms(Q), we define RI = {τa,b,c(~v) | (a, b, c) a triangle in G}.
Every relation is defined only once since Q is self-join-free. Note that |RI | ∈ O(n3), as

there are at most n3 triangles in G, and that we can construct I with O(n3) time.

Consider an answer µ|free(Q1) ∈ Q1(I). Since R1 and R2 are atoms in Q1, we

are guaranteed that (µ(z0), µ(z1), µ(u)) and (µ(z1), µ(z2), µ(u)) form triangles in G.

Therefore, the graph contains a 4-clique if and only if there is an edge (µ(z0), µ(z2)). As

z0, z2 ∈ free(Q1) it suffices to check every µ|free(Q1) ∈ Q1(I) for this property. Since Q1

is free-path guarded, we know that z1 is existential in Q1 but free in Q2. This means

that free(Q1) 6= free(Q2) and so there is no homomorphism from Q2 to Q1. We can

therefore use the mappings from Lemma 3.11 in order to distinguish the answers of Q1

from those of Q2. We have that {z0, z1, z2, u} is neither contained in free(Q1) nor in

free(Q2). Thus, |Q(I)| ∈ O(n3). If Enum〈Q〉 is in Enum〈lin, const〉, we can construct

the database instance, compute Q, and check every answer to Q1 for an edge of the

form (µ(z0), µ(z2)) in total time O(n3), which contradicts 4-clique.

In the next section, we show that Lemma 3.21 and Lemma 3.22 cover all intractable

cases of the UCQs discussed in this section.

3.2.3 Complete Classification of Fragments of UCQs

We show next that the hardness proofs given above complete our tractability results

into a dichotomy for the fragments of UCQs we examined. We first establish this for

unions of two body-isomorphic acyclic CQs, and then conclude the same for unions of

two difficult CQs.

To prove that any union of two body-isomorphic acyclic CQs that is not covered

by Lemma 3.21 and Lemma 3.22 has a free-connex union extension, we need some

observations regarding the place of appearance of relevant variables in join-trees. Recall

that we call (v1, . . . , vn) a path of variables in a query Q if for all 1 ≤ i < n, there exists

an atom R(~ui) in Q such that {vi, vi+1} ⊆ ~v.

Proposition 3.23. Let (v1, . . . , vn) be a path of variables in an acyclic query Q, and let

As and At be atoms containing {v1, v2} and {vn−1, vn} respectively. For all 1 ≤ i < n,

the simple path between As and At on a join-tree of Q contains an atom Ri(~ui) such

that {vi, vi+1} ⊆ ~ui.

Proof. We prove this by induction on n. If n = 3, this trivially holds as the endpoint, As

and At, contain the required variables. We now assume this proposition holds for paths

of length n− 1 and show that it also holds for paths of length n where n ≥ 4. Consider
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the simple path between As and a node containing {vn−2, vn−1}. Let Am be the first

node on that path that contains {vn−2, vn−1}. Denote by Ps the simple path between

As and Am. Note that Am is the only node on Ps that contains {vn−2, vn−1}. By the

induction assumption, Ps contains {vi, vi+1} for all 1 ≤ i < n− 1, and in particular it

contains {vn−3, vn−2}. Denote by Pt the simple path between Am and At, and denote

by P the concatenation of Ps and Pt. The path P goes between As and At and contains

{vi, vi+1} for all 1 ≤ i < n. We claim that P is a simple path. Assume by contradiction

that P is not simple. This means that there is a node Av that Ps and Pt share other

than Am. Due to the running intersection property, since Av is on the simple path

between Am and At, Av contains vn−1. Denote by Am−1 the node preceding Am on Ps.

Due to the running intersection property, since Am−1 is on the simple path between

Av and Am, Am−1 contains vn−1 too. Since a node containing {vn−3, vn−2} is on Ps,

and since Am−1 is on the simple path between this node and Am, Am−1 contains vn−2.

Overall, we have that Am−1 contains {vn−2, vn−1}, which is a contradiction to the fact

that Am is the only such node on Ps.

Proposition 3.24. Let (v1, . . . , vn) be a path of variables in an acyclic query Q, and

let As and At be atoms containing {v1, v2} and {vn−1, vn} respectively. If A1 and A2

are two subsequent nodes on the simple path P between As and At on a join-tree of Q,

then there exists some 1 ≤ i ≤ n such that vi ∈ A1 ∩A2.

Proof. Denote the subpath of P between As and A1 by Ps, and the subpath between

A2 and At by Pt. Denote by i the maximal index such that vi ∈ var(Ps). If i = n, note

that an atom in Ps and an atom in Pt both contain vi. Otherwise, i < n. According to

Proposition 3.23 and since all atoms of P appear in either Ps or Pt, an atom containing

the variables {vi, vi+1} must appear in Ps or Pt. It does not appear in Ps because of

the maximality of i, so it appears in Pt. In this case too, an atom in Ps and an atom in

Pt both contain vi. Since A1 and A2 are on the path between these atoms, due to the

running intersection property, vi ∈ A1 ∩A2.

Using this proposition, we can prove the structural property that we need.

Lemma 3.25. Let Q = Q1 ∪Q2 be a union of body-isomorphic acyclic CQs, where Q1

and Q2 are free-path guarded, and Q1 is bypass guarded, and let P = (z0, . . . , zk+1) be a

free-path in Q1. There exists a join-tree T for Q1 with a subtree TP such that:

• var(P ) ⊆ var(TP ).

• For every variable u that appears in two different atoms of TP :

– u ∈ free(Q2).

– There is an atom R(~v) in TP such that u, zi ∈ ~v for some 0 < i < k + 1.

Proof. Recall according to our notation, we assume that body-isomorphic CQs have

exactly the same body. Thus, T is also a join-tree for Q2. In the following, we refer to

the body of Q when we make statements that apply to the bodies of both Q1 and Q2.
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Consider a path PA = (A1, . . . , As) between two atoms on a join tree. We define a

contraction step for a path of length 2 or more: if there exists j such that Aj ∩Aj+1 ⊆
A1 ∩ As, then remove the edge (Aj , Aj+1) and add the edge (A1, As). A path on a

join-tree is said to be fully-contracted if none of its subpaths can be contracted. Given

any two atoms on a join-tree, it is possible to fully contract the path between them by

performing any arbitrary sequence of contraction steps until it is no longer possible: the

process will end as every contraction step reduces the length of the path.

We now claim that the graph T ′ obtained from such a contraction step of a path PA

on a join-tree T , remains a join-tree. It is still a tree since it remains connected and

with the same number of edges as before. It is left to show the running intersection

property. We start with some observations regarding T . Since the running intersection

property holds in T , for all 1 ≤ i ≤ s, A1 ∩ As ⊆ Ai. Since Aj ∩ Aj+1 ⊆ A1 ∩ As, we

also have that Aj ∩ Aj+1 ⊆ Ai. Now consider two nodes B and C. We need to show

that every node on the simple path between them in T ′ contains B ∩ C. If it is the

same path as in T , then we are done. Otherwise, a path between B and C in T ′ can be

obtained by using the simple path between them in T and replacing the edge (Aj , Aj+1)

with (Aj+1, . . . , As, A1, . . . , Aj). The simple path between B and C is contained in this

path. This means that atoms on the simple path between B and C in T ′ are either:

(1) on the simple path between B and C in T , and therefore contain B ∩ C; (2) on the

path PA and therefore contain Aj ∩Aj+1. Since Aj and Aj+1 are on the path between

B and C in T , we have that B ∩ C ⊆ Aj ∩Aj+1, so in this case too, the atoms contain

B ∩ C. This proves that the contracted graph is indeed a join-tree. By induction, if we

fully contract a path on a join-tree, we still have a join-tree.

Now let T be a join-tree of Q, and denote P = (z0, . . . , zk+1). We consider some

path in T between an atom containing {z0, z1} and an atom containing {zk, zk+1}.
Take the unique subpath of it containing only one atom with {z0, z1} and one atom

with {zk, zk+1}, and fully contract it. We denote this fully contracted subpath as

TP = (A1, . . . , As). Due to Proposition 3.23, var(P ) ⊆ var(TP ).

First, we claim that every variable u that appears in two or more atoms of TP is

part of a chordless path from z0 to zk+1. We first show a chordless path from u to

zk+1. Denote the last atom on TP containing u by Ai. If Ai contains zk+1, we have

found the chordless path (u, zk+1), and we are done. Otherwise, Ai is not the last atom

on TP . It is also not the first atom on TP , as another atom contains u. Consider the

subpath Ai−1, Ai, Ai+1. Since it is fully contracted, Ai ∩ Ai+1 6⊆ Ai−1 ∩ Ai+1. This

means that there is a variable u+1 in Ai and in Ai+1 that does not appear in Ai−1. Now

consider the last atom containing u+1, and continue with the same process iteratively

until reaching zk+1. This results in a chordless path u, u+1, . . . , u+m = zk+1 with m ≥ 1.

Do the same symmetrically to find a chordless path z0 = u−n, . . . , u−1, u with n ≥ 1.

We now claim that the concatenation Pu = (u−n, . . . , u−1, u, u+1, . . . , u+m) is chordless.

We prove that u−t and u+` are not neighbors for all 1 ≤ t ≤ n and 1 ≤ ` ≤ m by

induction on ` + t. Out of the atoms containing u, the variable u+1 only appears in
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the last atom by construction: if u+1 = zk+1 this is true since zk+1 appears only in one

atom, and otherwise it is true because this is how we chose u+1. Similarly u−t only

appears in the first. Since there are at least two atoms of the path containing u, we

have that u−1 and u+1 are not neighbors, and this proves the induction base. Next,

assume by way of contradiction that u−t and u+` are neighbors. By using the induction

assumption, we have that u−t, . . . , u−1, u, u+1, . . . , u+`, u−t is a chordless cycle of length

four or more, contradicting the fact that Q is acyclic and therefore chordal. This proves

that u is part of the chordless path Pu from z0 to zk+1.

Assume by contradiction that a variable u 6∈ free(Q2) appears in two distinct atoms

of TP . There is a chordless path from z0 to zk+1 that contains u. Denote this path Pu.

Take a subpath of Pu starting with the last variable on Pu before u that is in free(Q2),

and ending with the first variable on Pu after u that is in free(Q2). Such variables

exist on this path because z0, zk+1 ∈ free(Q2). This subpath is a free-path in Q2, and

since Q2 is free-path guarded, u ∈ free(Q1). Next consider two neighboring atoms on

TP that contain u. According to Proposition 3.24, there exists some zi that appears

in both atoms. Note that i > 0 and i < k + 1 since the path only contains one atom

with z0 and one atom with zk+1. Since Q1 is bypass guarded and u 6∈ free(Q2), it is

not possible that there is both an atom with {zi−1, zi, u} and an atom with {zi, zi+1, u}
in Q. Without loss of generality, assume there is no atom with {zi, zi+1, u}. Since the

query is acyclic, this means that u and zi+1 are not neighbors (if the three variables

zi, zi+1, u are pairwise neighbors in an acyclic graph, then necessarily they all appear

in the same hyperedge). Then, there is a chordless path (u, zi, zi+1, . . . , zk+1). Since

u ∈ free(Q1), it is a free-path. This contradicts the fact that Q1 is free-path guarded

since u 6∈ free(Q2).

It is left to show that there is an atom R(~v) in TP such that u, zi ∈ ~v for some

0 < i < k + 1. Since u appears in two distinct atoms of TP , and since TP is a join-tree,

u also appears in two adjacent atoms of TP . According to Proposition 3.24, there exists

0 ≤ i ≤ k + 1 such that zi is in those atoms. This cannot be 0 or k + 1 because they

appear only in one atom in TP .

We now get that the properties of free-path guarded and bypass guarded imply the

existence of a free-connex union extension.

Lemma 3.26. Let Q = Q1 ∪ Q2 be a union of body-isomorphic acyclic CQs. If Q1

and Q2 are both free-path guarded and bypass guarded, then Q has a free-connex union

extension.

Proof. We describe how to iteratively build a union extension for each CQ. In every

step, we take one free-path among the queries in Q and add a virtual atom in order

to eliminate this free-path. More specifically, let P = (z0, . . . , zk+1) be a free-path

in Q1. Take TP according to Lemma 3.25, and denote by VP the variables of P and

all variables that appear in more than one atom of TP . We add the atom R(VP ) to
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both Q1 and Q2 and obtain Q+
1 and Q+

2 respectively. We will show that repeatedly

applying such steps eventually leads to a free-connex union extension.

First, we claim that Q2 supplies VP . It is guaranteed that VP ⊆ free(Q2) since P is

guarded and due to Lemma 3.25. We now show that Q2 is acyclic VP -connex. We know

that TP is a subtree of T that contains VP , but it may contain additional variables,

each appearing in only atom, so we need to modify the tree. For every vertex Ai in

TP , add another vertex with A′i = var(Ai) ∩ VP and an edge (Ai, A
′
i). Then, for every

edge (Ai, Aj) in TP , replace it with the edge (A′i, A
′
j). The new graph is a tree since it

is connected and the number of added vertices is equal to the number of added edges

(hence, after the modification, the number of edges remains equal to the number of

vertices minus one). We next show that the running intersection property is maintained.

For every edge (Ai, Aj) removed, var(Ai)∩var(Aj) ⊆ VP , and so by definition of the new

vertices, var(Ai)∩var(Aj) = var(A′i)∩var(A′j). Given two nodes B and C of the join-tree,

the path between them in the modified join-tree is similar to the path in the original

join-tree, except it may contain the node (A′i, A
′
j) if it contained the node (Ai, Aj) before.

Since the running intersection property holds in T , every node on the path between

B and C contains var(B) ∩ var(C). Since var(Ai) ∩ var(Aj) = var(A′i) ∩ var(A′j), the

running intersection property also holds in the modified tree. As the variables of the

subtree that consists of the new vertices are exactly VP , this concludes the proof that

Q2 supplies VP .

After the extension step we described, there are no free-paths that start in z0 and end

in zk+1 since these variables are now neighbors. If both of the CQs are now free-connex,

then we are done. Otherwise, we use the extension recursively. We can apply the

extension again as we show next that the UCQ Q+
1 ∪Q

+
2 conforms to the conditions

of this lemma. Note that after a free-path from z0 to zk+1 is treated, and even after

future extension, there will be no free-path from z0 to zk+1 since they are now neighbors.

Since there is a finite number of variable pairs, after a finite number of such steps, all

pairs that have a free-path between them are resolved. At this point, we have an acyclic

extension with no free-paths, so it is free-connex. It is left to prove that the conditions

of this lemma are maintained after the extension steps as long as at least one of the

extended CQs is not free-connex. We show that in the following three claims.

Claim 3.27. Q+
1 and Q+

2 are body-isomorphic acyclic.

We now prove Claim 3.27. We show a join-tree T+ for the extension. Take the join-tree

T according to Lemma 3.25, and add the vertex R(VP ). Remove all edges in TP and add

an edge between R(VP ) and every atom in TP . This construction results in a connected

graph with no cycles, and so it is a tree. We claim that the running intersection property

is preserved. Let B and C be two nodes in T+. We first handle the case that none of B

and C are R(VP ). We need to show that every node on the path between them in T+

contains B ∩ C. Since this property holds in T , every node on the path between them

in T+ that also appears on the path between them in T preserves this property. By
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construction, the only new node that may appear on this path is R(VP ). In this case,

the two nodes before and after R(VP ) on this path contain B ∩ C. By definition, VP

contains all variables that appear in more that one atom in TP , so R(VP ) contains every

variable that appears in more than one of its neighbors, and it also contains B ∩C. It is

left to handle the second case. Assume without loss of generality that C = R(VP ). We

need to handle the path between R(VP ) and B. Let v ∈ VP ∩B. Since v ∈ VP , there

exists some node Av in TP that contains it. Consider the simple path in T between Av

and B, and let A′v be the last node on this path which is in TP . Due to the running

intersection property, every node on this path contains Av ∩B, and so it also contains v.

The edge from VP to A′v and the simple path from A′v to B is therefore a simple path

in T+ from VP to B that contains v. This concludes the claim proof.

Claim 3.28. Q+
1 and Q+

2 are free-path guarded.

We now prove Claim 3.28. Since the original CQs are free-path guarded, every free-path

in the extension that is also a free-path in the original query is guarded. According to

our construction, the only atom that was added in the extension contains exactly VP .

Thus, a new free-path (v0, . . . , vm+1) contains vj , vj+1 ∈ VP ⊆ free(Q2) = free(Q+
2 ). In

particular, since the variables in the center of a free-path are existential, Q+
2 does not

contain new free-paths. It is left to handle free-paths that appear in Q+
1 but not in Q1.

Let P ′ = (v0, . . . , vm+1) be a free-path in Q+
1 but not in Q1, and let vj , vj+1 ∈ VP .

We need to show that vi ∈ free(Q+
2 ) for all 0 ≤ i ≤ m + 1. First note that vj , vj+1 ∈

VP ⊆ free(Q2) = free(Q+
2 ). We next prove the same for v0 and vm+1.

We first claim that there is a path Pmid between vj and vj+1 that goes only through

existential variables in Q1. We prove that every variable in VP is either of the form zi

such that 0 < i < k+1 (recall that these are the variables in the center of the eliminated

free-path) or it has a neighbor of that form. Let v ∈ VP . By definition of VP , either

there exists 0 ≤ i ≤ k + 1 such that v = zi or v appear in two atoms or more in TP . In

the first case, if 0 < i < k + 1, then it is of the required form. Otherwise, if i = 0, it

has the neighbor z1, and if i = k + 1, it has the neighbor zk. In the second case (if v

appear in two atoms or more in TP ), according to Lemma 3.25, v has a neighbor of the

required form. Since vj , vj+1 ∈ VP , this proves that each of vj and vj+1 is either of the

form zi such that 0 < i < k + 1 or it has a neighbor of that form. Since all zi such that

0 < i < k + 1 are connected through P , there is a path Pmid between vj and vj+1 that

goes only through existential variables in Q1.

Since P ′ is chordless, no variable in P ′ other than vj and vj+1 is in VP . One

consequence of this is that Ps = (v0, . . . , vj) and Pt = (vj+1, . . . , vm+1) are also paths in

Q1. Another consequence is that v0 and vm+1 are not both in VP . Since P ′ is chordless

and m ≥ 1, we have that v0 and vm+1 are not neighbors in Q+. Since they are not both

on the new atom, v0 and vm+1 are not neighbors in Q either. By concatenating Ps,

Pmid and Pt, we obtain a path in Q from v0 to vm+1 that goes only through existential

variables in Q1. Take a simple chordless path P` contained in it. Since v0 and vm+1 are
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not neighbors, the path P` is of length two at least, and so it is a free-path in Q1. Since

Q1 is free-path guarded, we conclude that v0, vm+1 ∈ free(Q2).

So far we have that v0, vj , vj+1, vm+1 ∈ free(Q2). Assume by contradiction that

there exists 0 < i < j such that vi 6∈ free(Q2), and consider the subpath of Ps beginning

with the last variable before vi on Ps that is in free(Q2) and ending with the first after

vi on Ps that is in free(Q2). This is a free-path in Q2 containing vi. We know that

vi 6∈ free(Q1) as it is in the center of the free-path P ′, but this contradicts the fact

that Q2 is free-path guarded. In the same way, we can show that vi ∈ free(Q2) for

all j + 1 < i < m + 1. Overall we have seen that vi ∈ free(Q2) = free(Q+
2 ) for all

0 ≤ i ≤ m+ 1 as required. This concludes the claim proof.

Claim 3.29. Q+
1 and Q+

2 are bypass guarded.

We now prove Claim 3.29. First let P ′ = (t0, . . . , tm+1) be a free-path in Q+
2 , and assume

by contradiction that there exists some u 6∈ free(Q+
1 ) that appears in two subsequent P ′-

atoms. This means that there exists i such that Q+
2 has an atom containing {ti−1, ti, u}

and an atom containing {ti, ti+1, u}. As explained in the previous claim, Q+
2 has no new

free-paths, so P ′ is a free-path in Q2 as well. Since Q2 is bypass guarded, u does not

appear in two subsequent P ′-atoms in Q2, so one of these atoms is new in Q+
2 . Assume

without loss of generality that it is {ti, ti+1, u}. Then, {ti, ti+1, u} ⊆ VP ⊆ free(Q2).

This contradicts the fact that ti 6∈ free(Q2) since P ′ is a free-path.

Now let P ′ = (t0, . . . , tm+1) be a free-path in Q+
1 . Assume by contradiction that

there exists some u 6∈ free(Q+
2 ), that appears in two subsequent P ′-atoms. This means

that Q+ has an atom containing {ti−1, ti, u} and an atom containing {ti, ti+1, u}. Since

P ′ is chordless, ti−1 and ti+1 are not neighbors, and so (ti−1, u, ti+1) is a chordless

path as well. According to Claim 3.28, var(P ′) ⊆ free(Q+
2 ), and so (ti−1, u, ti+1) is

a free-path in Q+
2 . According to Claim 3.28 again, {ti−1, u, ti+1} ⊆ free(Q+

1 ). Since

the only free variables on a free-path are at its ends, this means that P ′ is of length

two, and i = m = 1. Since u 6∈ free(Q2) and VP ⊆ free(Q2), we have that the atoms

containing {t0, t1, u} and {t1, t2, u} are not the added atom, and so they appear also in

Q2 and in Q1. This means that P ′ is a free-path in Q1, and u 6∈ free(Q2) appears in

two subsequent atoms of P ′ in Q1. Thus, Q1 is not bypass guarded, in contradiction to

the conditions of this lemma. This concludes the claim proof.

This proves that the lemma can be applied iteratively.

Since Lemma 3.21, Lemma 3.22 and Lemma 3.26 cover all cases of a union of two

self-join-free body-isomorphic acyclic CQs, we have a dichotomy that characterizes the

fragment of UCQs we discuss.

Theorem 3.30. Let Q = Q1 ∪ Q2 be a non-redundant union of self-join-free body-

isomorphic CQs.

• If Q1 and Q2 are acyclic, free-path guarded and bypass guarded, then Q has a

free-connex union extension and Enum〈Q〉 ∈ Enum〈lin, const〉.
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• Otherwise, Q does not have a free-connex union extension and Enum〈Q〉 is not

in Enum〈lin, const〉, assuming Hyperclique, BMM and 4 -clique.

Proof. Since the CQs are body-isomorphic, they are either both acyclic or both cyclic.

First assume that the CQs are acyclic. By Lemma 3.26, if Q1 and Q2 are both

free-path guarded and bypass guarded, then Q has a free-connex union extension, and

Enum〈Q〉 ∈ Enum〈lin, const〉 by Theorem 3.9. Otherwise, either one of Q1 and Q2 is not

free-path guarded, or they both are but one of them is not bypass guarded. In these cases,

by Lemma 3.21 and Lemma 3.22, Enum〈Q〉 6∈ Enum〈lin, const〉 assuming BMM and

4-clique. By Theorem 3.15, if the CQs are cyclic, Enum〈Q〉 is not in Enum〈lin, const〉
assuming Hyperclique. In all cases where Enum〈Q〉 6∈ Enum〈lin, const〉, we know

that Q does not have a free-connex union extension by Theorem 3.9.

By combining Theorem 3.30 with Theorem 3.15, we have the following dichotomy

for the case of unions containing exactly two difficult CQs.

Theorem 3.31. Let Q = Q1 ∪Q2 be a non-redundant union of difficult CQs.

• If Q has a free-connex union extension, then Enum〈Q〉 ∈ Enum〈lin, const〉.
• Otherwise, Q does not have a free-connex union extension and Enum〈Q〉 is not

in Enum〈lin, const〉, assuming BMM, Hyperclique and 4 -clique.

Proof. If Q has a free-connex union extension, Theorem 3.1 proves that it is tractable.

If Q1 and Q2 are acyclic and body-isomorphic but Q does not have a free-connex union

extension, then Theorem 3.30 proves that Q is intractable. Otherwise, Q is a union of

difficult CQs that does not contain body-isomorphic acyclic CQs, and Theorem 3.15

proves that it is intractable.

3.3 The Unbalanced Triangle Detection Hypothesis

In this section, we discuss the problem of evaluating unions of two CQs that are not

covered by the previous sections. These are UCQs that contain a tractable CQ and a

difficult CQ that are not body-isomorphic. We define the Unbalanced Triangle Detection

(UTD) hypothesis, and discuss the connections between the two problems. UTD is a

simple hypothesis on graphs, and we show that in some cases, it exactly captures the

hardness of UCQs. We also show that, assuming this hypothesis alone, all self-join-free

unions of two binary CQs are intractable if they do not admit a free-connex union

extension.

We start with discussing a similar assumption. The unbalanced triangle listing

hypothesis states that listing any number of triangles of an unbalanced tripartite graph

requires super-linear time in terms of input and output size.

Definition 3.32 (Unbalanced Triangle Listing). We denote by UTL the following hy-

pothesis: For any constant α ∈ (0, 1], listing t triangles in a tripartite graph with

|V1| = |V2| = nα and |V3| = n cannot be done in time O(n1+α + t).
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The 3SUM conjecture [GO95, KPP16] is a well-known hypothesis that states that,

given a set A of integers, the time required to decide whether there is a triple (a, b, c) ∈ A3

of distinct elements such that a+ b = c is Ω(n2−o(1)). UTL is a consequence of 3SUM.

Proposition 3.33. If 3SUM holds, then UTL holds too.

Proof. Fix a constant α ∈ (0, 1] and set δ = γ = min{α3 ,
1
6}. Starting from a 3SUM

instance of size n, a construction by Kopelowitz, Pettie and Porat [KPP16, Proof

of Theorem 1.8] generates an unbalanced triangle listing instance with the following

parameters: |V1| = |V2| = n
1+δ+γ

2 = n
1
2

+δ, |V3| = n1+δ−γ = n and the number of

triangles is at most n2−δ. Listing the triangles over this construction solves the 3SUM

instance, so we assume this cannot be done in subquadratic time.

As a first step, we split V1 and V2 each into nδ sets of size n
1
2 . This yields n2δ

subproblems, each with |V1| = |V2| = n
1
2 and |V3| = n, and their total number of

triangles is at most n2−δ. Listing the triangles of all subproblems yields the same

result as listing the triangles of the original construction. Assume by contradiction that

it is possible to list t triangles in a tripartite graph with |V1| = |V2| = |V3|α in time

O(|V3|1+α + t).

In case α = 1
2 we are done now. Indeed, each subproblem has |V1| = |V2| = |V3|α,

and if each subproblem could be solved in time O(n1+α + t) then the total running time

to solve all subproblems would be O(n2δ+1+α + n2−δ) since there are n2δ subproblems

and their total number of triangles is at most n2−δ. We can simplify this time bound

to O(n
3
2

+2δ + n2−δ) = O(n2− 1
6 ) since α = 1

2 and δ = α
3 = 1

6 . This running time is

subquadratic, contradicting 3SUM.

In case α < 1
2 , we further split V1 and V2 each into n

1
2
−α sets of size nα. Together

with the first splitting step (where we split into n2δ subproblems), this yields n2δ+1−2a

subproblems, each with |V1| = |V2| = nα and |V3| = n, and their total number of

triangles is at most n2−δ. If each subproblem could be solved in time O(n1+α + t), then

all subproblems in total could be solved in time O(n2δ+1−2αn1+α + n2−δ) since there

are n2δ+1−2α subproblems and their total number of triangles is at most n2−δ. We can

simplify this time bound to O(n2−α+2δ + n2−δ) = O(n2−α
3 ) since δ = α

3 . This running

time is subquadratic for any fixed constant α ∈ (0, 1
2), contradicting 3SUM.

In case α > 1
2 , we split V3 into n1− 1

2α sets of size n
1
2α . Together with the first splitting

step (where we split into n2δ subproblems), this yields n2δ+1− 1
2α subproblems, each with

|V1| = |V2| = n
1
2 and |V3| = n

1
2α , so |V1| = |V2| = |V3|α. If each subproblem could be

solved in time O(|V3|1+α + t), then all subproblems in total could be solved in time

O(n2δ+1− 1
2α |V3|1+α+n2−δ) since there are n2δ+1− 1

2α subproblems and their total number

of triangles is at most n2−δ. Plugging in |V3| = n
1
2α yields time O(n2δ+1− 1

2α
+ 1+α

2α +

n2−δ) = O(n
3
2

+2δ + n2−δ) = O(n2− 1
6 ) since δ = 1

6 , again contradicting 3SUM.

UTL (or 3SUM) can be used to show that some UCQs, for which we did not have

a prior characterization, are intractable. In the following, we say that a CQ Q2 provides
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a set V1 of variables to Q1 if there is a body homomorphism h from Q2 to Q1 and Q1

supplies V2 such that h(V2) = V1. Note that if Q2 is free-connex, this requirement boils

down to having V2 ⊆ free(Q2) and h(V2) = V1.

Example 3.34. [CK19b, Example 37] Let Q = Q1 ∪Q2 with

Q1(x, z, y, v)← R1(x, z, v), R2(z, y, v), R3(y, x, v) and

Q2(x, z, y, v)← R1(x, z, v), R2(y, t1, v), R3(t2, x, v).

The CQ Q2 is free-connex. Hence, it is not difficult, and Q is not covered by our results

in Theorem 3.31. The only difficult structure in Q1 is the cycle x, y, z. If all cycle

variables were provided by Q2, we would be able to eliminate the cycle by adding a

virtual atom with its variables, and extend the CQ to a tractable form. However, y is

not provided. The existing approach to show the difficulty of a CQ with a cycle is to

encode the triangle finding problem to this cycle. In our case, this encoding may result

in n3 answers to Q2. Thus, if the input graph has triangles, we are not guaranteed to

find one in O(n2) time by evaluating the union efficiently. By using unbalanced tripartite

graphs, we make use of the fact that y is not provided to show hardness. We assign the

heavy node set to y, and we assign to x and z node sets of size nα. Thus, when Q1 finds

the triangles in the graph, Q2 has at most n3α answers. If Enum〈Q〉 ∈ Enum〈lin, const〉,
we can compute all answers over this construction in O(n1+α + t) time, contradicting

UTL. �

In Example 3.34, we are able to use a triangle listing assumption because the

variables of the cycle in Q1 are free. However, there exist similar cases where some of

these variables are projected. In these cases, we can use a similar argument, but we

must use a detection assumption rather than a listing one.

Definition 3.35 (Unbalanced Triangle Detection). We denote by UTD the following

hypothesis: For any constant α ∈ (0, 1], determining whether there exists a triangle in a

tripartite graph with |V1| = |V2| = nα and |V3| = n cannot be done in time O(n1+α).

The UTD hypothesis can be used not only when a CQ in the union contains a

cycle, but also when it contains a free-path. The following example is also not covered

by the previous sections since Q2 is tractable and the two CQs in the union are not

body-isomorphic.

Example 3.36. [CK19b, Example 29] Let Q = Q1 ∪Q2 with

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, t1), R2(t2, y), R3(w, t3).

The only difficult structure in Q1 is the free-path x, z, y. If all free-path variables were

provided by Q2, we would be able to eliminate the free-path by adding a virtual atom

with its variables and extend the CQ to a tractable form. However, here, z is not

provided. The existing approach to show the difficulty of a CQ with a free-path is to

encode the Boolean matrix multiplication problem to this free-path. In our case, such
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an encoding may result in n3 answers to Q2. This means that we are not guaranteed to

find all non-zero entries in the multiplication result in O(n2) time by evaluating the

union efficiently. By using unbalanced tripartite graphs, we can rely on the fact that z

is not provided to show hardness. We assign the heavy node set to z, and we assign

to x and y node sets of size nα. The variable w is assigned some constant ⊥. Under

this construction, Q1 returns tuples (a, b,⊥) such that there exists a node c which is

a neighbor to both a and b. For every such answer, we check whether a and b are

neighbors. If they are, a cycle exists. When Q1 finds all candidates for triangles in the

graph, Q1 and Q2 have at most n3α answers each. If Enum〈Q〉 ∈ Enum〈lin, const〉, we

can compute all answers over such a construction in O(n1+α) time, contradicting UTD.

�

Example 3.36 demonstrates that if we assume UTD, we can prove the hardness of

previously unclassified UCQs. However, unlike the similar UTL, we are not aware of a

well-established complexity hypothesis that implies UTD. We offer next another reason

to use UTD to reason about the hardness of UCQs that do not admit a free-connex

union extension: in some cases, UTD exactly captures the hardness of such UCQs.

3.3.1 UCQ Hardness Implies UTD

In this section, we show a tight connection between unbalanced triangle detection and

the evaluation of UCQs: in some cases UTD exactly captures the hardness of queries

for which the currently known efficient algorithms cannot be applied. In particular, if

free-connex union extensions capture all tractable UCQs, then UTD necessarily holds.

We prove the following theorem.

Theorem 3.37. There exists a family of UCQs with no free-connex union extensions

such that UTD holds iff no query of the family is in Enum〈lin, const〉.

To prove Theorem 3.37, we need to be more specific about the values of α for which

we assume that UTD holds. For this reason, we define the following hypothesis.

Definition 3.38. We denote by α-UTD the following hypothesis: Determining whether

there exists a triangle in a tripartite graph with |V1| = |V2| = nα and |V3| = n cannot

be done in time O(n1+α).

Then, the UTD hypothesis is that α-UTD holds for every constant α ∈ (0, 1]. We

next show that α-UTD is “monotone” in the sense that it implies β-UTD for larger

values of β.

Proposition 3.39. If α-UTD holds, then β-UTD holds for all β ≥ α.

Proof. We show a self-reduction that splits the set V3. Let 0 < α < β ≤ 1, and

assume that determining whether there exists a triangle in a tripartite graph with

52



|V1| = |V2| = nβ and |V3| = n can be done in time O(n1+β). Let G = (V1 ∪ V2 ∪ V3, E)

be a tripartite graph with |V1| = |V2| = nα and |V3| = n. Split V3 into n
1−α

β subsets

of size n
α
β . This splits G into n

1−α
β subgraphs G1, . . . , Gt. Each subgraph is tripartite

with parts V1, V2, V
′

3 with |V1| = |V2| = nα = |V ′3 |
β. Therefore, the assumed algorithm

determines whether Gi has a triangle in time O(|V ′3 |
1+β). Running this algorithm on

each graph Gi takes total time O(n
1−α

β |V ′3 |
1+β) = O(n

1−α
β

+α
β

+α
) = O(n1+α). Thus,

we can solve the given α-UTD instance G in time O(n1+α).

We prove Theorem 3.37 with the following example.

Example 3.40. Let Q[c] be the union of the following CQs, where atoms that contain i

are replaced with c atoms with all integers 1 ≤ i ≤ c.
Q1(v1 . . . , v2c)← R1(x, y), R2(y, z), R3(x, z), R4(v1 . . . , v2c), Rx,i(x), Ry,i(y)

Q2(v1 . . . , v2c)← Rx,i(vi), Ry,i(vc+i)

Q3(v1 . . . , v2c)← R1(v1, t1), R2(t2, v2), R4(t3, t4, v3, . . . , v2c)

Q4(v1 . . . , v2c)← R1(t1, v1), R2(t2, v2), R4(t3, t4, v3, . . . , v2c)

Note that Q[c] does not have a free-connex union extension. In particular, Q1 contains

a cycle x, y, z. Since y is not provided by any of the other CQs in the union, any union

extension of Q1 preserves this cycle.

Claim 3.41. If UTD does not hold, then Q[c] ∈ Enum〈lin, const〉 for c large enough.

Proof. If UTD does not hold, then β-UTD does not hold for some β ∈ (0, 1). According

to Proposition 3.39, this also means that for all α < β, we have that α-UTD does

not hold. That is, for all α ∈ (0, β), determining whether there exists a triangle in a

tripartite graph with |V1| = |V2| = nα and |V3| = n can be done in time O(n1+α). Let

c ≥ 1
β + 1. We show how, given a database I, we can enumerate Q[c](I) with linear

preprocessing and constant delay.

We can first compute Q2(I), Q3(I) and Q4(I) with linear preprocessing and constant

delay each, as these CQs are free-connex. In the following, we show how to find

Q1(I) with constant delay after O(|I|+ |Q2(I)|+ |Q3(I)|+ |Q4(I)|) preprocessing time.

This means that by interleaving the computation of the preprocessing of Q1 with the

evaluation of the other CQs, we can enumerate the answers to Q1 with constant delay

directly after the end of the enumeration of the other CQs. According to the Cheater’s

Lemma (Lemma 3.4), since the delay between answers is constant except for at most

three times where the delay is linear, and since there are at most four duplicates per

answer, the algorithm we present here can be modified to work with linear preprocessing

time and constant delay with no duplicates.

Note that if one of the relations of Q are empty, than Q1(I) = ∅, and we can finish

the evaluation of Q1(I) immediately. In the following we assume that no relation is

empty. Consider the Boolean query Q′1()← R1(x, y), R2(y, z), R3(x, z), Rx,i(x), Ry,i(y).

Note that Q1(I) is exactly RI4 if Q′1 is evaluated to true, and it is empty otherwise. To
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evaluate Q′1, we can first filter the relations R1, R2 and R3 by performing semi-joins

with Rx,i and Ry,i for all i. Formally, we set

E12 = {(a, b) | R1(a, b) ∧ ∀i ∈ [c] : Rx,i(a) ∧Ry,i(b)},

E23 = {(b, c) | R2(b, c) ∧ ∀i ∈ [c] : Ry,i(b)}, and

E13 = {(a, c) | R3(a, c) ∧ ∀i ∈ [c] : Rx,i(a)}.
Now, it is left to evaluate Q′′1()← E12(x, y), E23(y, z), E13(x, z) as Q′1() = Q′′1(). Denote

V1 = {a | ∃b : E1,2(a, b)}, V2 = {b | ∃a : E1,2(a, b)}, and V3 = {c | ∃b : E2,3(b, c)}. If

|V3| ≤ max{|V1|, |V2|}c−1, then we evaluate Q′′1 in O(|V1||V2||V3|) time by checking all

possible assignments to x, y and z. Since |V1||V2||V3| ≤ (|V1||V2|)c ≤ |Q2(I)|, this takes

O(|Q2(I)|) time. The second case is that |V3| > max{|V1|, |V2|}c−1. We set n = |V3|
and α = logn max{|V1|, |V2|}; note that α < 1

c−1 ≤ β. If we can solve triangle detection

in time O(n1+α), then we can answer Q′′1 within this time. Note that |Q3(I)| ≥ |V1||V3|
and |Q4(I)| ≥ |V2||V3|. Therefore, max{|Q3(I)|, |Q4(I)|} ≥ |V3|max{|V1|, |V2|} = n1+α.

Therefore, this check takes O(max{|Q3(I)|, |Q4(I)|}) time. If Q′′1 evaluates to false, Q4

returns no answers and we are done; otherwise, we output RI4 in constant delay.

Note that as part of the claim proof, we showed that Q[c] is tractable in case

|V3| ≤ max{|V1|, |V2|}c−1 without relying on any assumptions. This demonstrates that

z must have a large domain for this query to be intractable. That is, Q[c] is intractable

assuming UTD only when we can make no additional assumptions on the instance; if

the domain of z is limited, the query may become tractable. This also shows that in

any construction that proves a lower bound for Q[c], we must assign z with a larger

domain than that of the other variables. We do this in the following claim.

Claim 3.42. If UTD holds, then Q[c] 6∈ Enum〈lin, const〉 for all c.

Proof. Assume by contradiction that Q[c] ∈ Enum〈lin, const〉 for some c. We start

with a tripartite graph G with V1,V2,V3, E12, E23 and E13, where |V1| = |V2| = nα

and |V3| = n for some n ∈ N and α ≤ 1
2c−1 . We construct a database instance

I as follows: we assign R1 = E12, R2 = E23, R3 = E13, and R4 = {(⊥, . . . ,⊥)}.
For all i ∈ [c], we assign Rx,i = V1 and Ry,i = V2. The answers Q1(I) consist of

(⊥, . . . ,⊥) if there is a cycle in G and no answers otherwise. As for the other CQs,

|Q2(I)| = (|V1||V2|)c, |Q3(I)| = |V1||V3|, and |Q4(I)| = |V2||V3|. The tuple (⊥, . . . ,⊥)

is not an answer to CQs other than Q1, so (⊥, . . . ,⊥) ∈ Q[c](I) if and only if there

is a triangle in G. If Q[c] ∈ Enum〈lin, const〉, then we can compute all of Q[c](I) in

time O((|V1||V2|)c + |V1||V3|+ |V2||V3|) and determine the existence of a triangle in G

within this time. Since (|V1||V2|)c + |V1||V3|+ |V2||V3| = n2αc + 2n1+α = O(n1+α), this

contradicts UTD.

In this section we showed that if free-connex union extensions capture all tractable

UCQs, then UTD holds. The next section inspects the opposite direction: assuming

UTD, we prove the hardness of UCQs that do not admit free-connex union extensions.
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3.3.2 UTD Implies UCQ Hardness

In this section, we prove the hardness of UCQs that do not admit a free-connex union

extension assuming UTD. We consider unions of a tractable CQ and an difficult binary

CQ. Then, we show how UTD can be used instead of the hypotheses previously used

to show the hardness of UCQs.

The Reduction

The following lemma identifies cases in which we can perform a reduction from un-

balanced triangle detection to UCQ evaluation. The reduction requires identifying

variable sets in the UCQ that conform to certain conditions. We encode the tripartite

graph in the relations of the query by assigning variables from the same set with the

same values. The first three conditions ensure that we can construct the relations of

Q1 in a way that it detect triangles in the graph. The first condition requires that no

atom contains variables of all sets, which restricts the size of the relations and allows for

efficient construction. The second condition requires that each set is connected, which

ensures that in every answer, variables from the same set are assigned the same values.

The third condition ensures that the atoms can encode all three edge sets. The fourth

condition restricts the free variables of the other CQ in the union, which ensures that

it does not have too many answers, and the enumeration of the answers of the entire

union does not take too long. Given a function h : X → Y and a set S ⊆ Y , we denote

h−1(S) = {x ∈ X | h(x) ∈ S}.

Lemma 3.43. Let Q = Q1 ∪ Q2 non-redundant where Q1 is self-join-free and there

exist non-empty and disjoint sets X1, ..., X` ⊆ var(Q1) with ` ≥ 3 such that:

1. For every atom R(V ) in Q1, there exists Xi s.t. V ∩Xi = ∅.
2. H(Q1)[Xi] is connected for all i.

3. Define connectors(Q1) = {V | R(V ) ∈ atoms(Q1)}; if there exists Xi such that

free(Q1) ∩Xi = ∅, also add free(Q1) to connectors(Q1).

For every S ∈ {{1, 2}, {1, 3, . . . , `}, {2, 3, . . . , `}}, there exists V ∈ connectors(Q1)

such that V ∩Xi 6= ∅ for all i ∈ S.

4. For every body-homomorphism h from Q2 to Q1, if free(Q2) ∩ h−1(X`) 6= ∅, then

|free(Q2) ∩ h−1(X`)| = 1 and |free(Q2) ∩ h−1(
⋃

1≤i≤`−1Xi)| ≤ `− 2.

Then, Q 6∈ Enum〈lin, const〉 assuming UTD.

Note that the second condition trivially holds when |Xi| = 1.

Proof. We set α = max {|free(Q2)|, `− 2}−1. Assume we are given a tripartite graph

with node sets V1,V2,V3 and edges sets E1,2, E2,3, E1,3 where |V1| = |V2| = nα and

|V3| = n. We set U1 = V1, U2 = V2, and we encode the vertices of V3 as U3 × · · · × U`
such that |U3| = . . . = |U`−1| = nα and |U`| = n1−(`−3)α.

We now construct a database instance. We leave every relation that does not

appear in Q1 empty. We next discuss the atoms of Q1. Denote by R1,2 the atoms
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that contain a variable of X1 and a variable of X2; denote by R1,3 the atoms that

contain at least one variable of each Xi for i ∈ {1, 3, . . . , `}; and similarly for R2,3

and {2, 3, . . . , `}. According to condition 1, these three sets are disjoint. We encode

the edge sets E1,2, E1,3, E2,3 to these relations respectively. Specifically, given an atom

R(~v) in R1,3, for every edge (v1, v3) ∈ E1,3, add a tuple τ(~v) to R as follows: denote

by u3, . . . , u` the representation of v3 and set u1 = v1; the mapping τ replaces every

variable of the set Xi with the value ui; every variable that does not appear in such a

set Xi is replaced with the constant ⊥. The construction of relations in R2,3 follows

along the same lines. For atoms in R1,2 we have a similar construction, except if they

contain a variable of Xi for i > 2, we duplicate each edge and insert it with all possible

values in Ui. If there are variables of several such sets, we apply all combinations of

possible values. For example, if Q1 contains the atom R1(v1, v2, v4, v5, t) with vi ∈ Xi

and t 6∈ Xi for all i, then the relation R1 will be assigned E1,2×U4×U5×{⊥}. Similarly,

for atoms that do not belong to these sets, we assign variables of Xi with all values of

Ui and other variables with ⊥. For example, the atom R2(v4, v
′
4, v5, t) with vi, v

′
i ∈ Xi

and t 6∈ Xi for all i, will result in R2 = {(u4, u4, u5,⊥) | u4 ∈ U4 ∧ u5 ∈ U5}. Note that

whenever two variables from the same set Xi appear together in the same atom, we

always assign both with the same value. Note also that each relation is defined only

once since Q1 is self-join-free and since R1,3, R2,3 and R1,2 are disjoint.

We first claim that the answers to Q1 detect triangles in the graph. Since any given

tuple in our construction assigns different variables of the same set Xi with the same

value, if two variables of the same set appear together in an atom, then they are mapped

to the same value in any such answer. Condition 2 asserts that all variables in a set are

connected through atoms in Q1, and so, for every set Xi, all variables of the set are

mapped to the same value in any answer to Q1. Our construction also ensures that,

if Q1 contains an atom with a variable of X1 and a variable of X2, then any answer

to Q1 will map X1 and X2 to vertices that are neighbors in E1,2. The same holds for

X1, X3, . . . , X` and E1,3, and it also holds for X2, X3, . . . , X` and E2,3. Thus, if we do

not use free(Q1) as a connector, condition 3 ensures that the answers are filtered by

at least one atom that corresponds to each edge set, and so answers correspond to

triangles. That is, Q has an answer if and only if the graph has a triangle. If we do use

free(Q1) as a connector, some edge is not verified. This means that the answers to Q1

are candidates for triangles, and we need to check every answer for the missing edge to

determine if it corresponds to a triangle. In this case, by the definition of the connectors

set, there exists i such that free(Q1) ∩Xi = ∅. If i = `, the number of answers to Q1

is at most n1−(`−3)α(nα)`−2 = n1+α. If i < `, it is at most (nα)`−1 ≤ n1+α. Therefore,

performing a check that takes constant time for each answer takes O(n1+α) time overall.

We now show that the answers to Q2 do not interfere with detecting the triangles

efficiently. First note that we can distinguish the answers of Q1 from those of Q2. Since

we assume that Q is non-redundant, we have that Q1 is not contained in Q2, and so

there is no homomorphism from Q2 to Q1. Thus, we can apply the construction from
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Lemma 3.11 (which assigns different domains to different variables) to distinguish the

answers of the two CQs, and we can ignore the answers of Q2. We show next that Q2

does not have too many answers. If v is a free variable in Q2, it also appears in the

body of Q2 in some atom R(~v) with ~v[i] = v for some i. According to Lemma 3.11,

if Q2 has answers, then there exists a body-homomorphism h from Q2 to Q1. Thus,

R(h(~v)) appears in the body of Q1. If our construction assigns h(v) with c different

values across the different tuples in R, then there are at most c different values to which

v can map across the different answers of Q2. Thus, if no free variable of Q2 maps

via a body-homomorphism to a variable of X`, then the domain of any free variable

in Q2 is at most of size nα. Since there are at most 1
α free variables, Q2 has at most

n answers. Otherwise, due to condition 4, exactly one free variables of Q2 map to a

variable of X` and at most `− 2 free variables of Q2 map to variables of the other sets.

In this case, the number of answers to Q2 is at most n1−(`−3)α(nα)`−2 = n1+α.

If Q ∈ Enum〈lin, const〉, this construction detects triangles in the given graph in

time O(n1+α), in contradiction to UTD.

We want to use this reduction to show the hardness of non-free connex UCQs that

contain a tractable CQ and a difficult CQ. As the difficult CQ is self-join-free, we first

notice that there is at most one body-homomorphism mapping to a self-join-free CQ.

Lemma 3.44. Let Q = Q1 ∪Q2 where Q1 is self-join-free. There is at most one body

homomorphism from Q2 to Q1.

Proof. Let h1 and h2 be body-homomorphisms from Q2 to Q1. If h1 6= h2, there exists

a variable v ∈ var(Q2) such that h1(v) 6= h2(v). Consider an atom R(~v) in Q2 such that

v ∈ ~v. Since they are body homomorphisms, R(h1(~v)) and R(h2(~v)) are in Q1. This is

a contradiction to the fact that Q1 is self-join-free.

We can show that the reduction can be applied whenever the tractable CQ does not

provide all variables of some difficult structure in the difficult CQ.

Lemma 3.45. Consider a UCQ Q = Q1 ∪Q2 where Q1 is difficult and Q2 is tractable.

If Q2 does not provide all variables of a difficult structure in Q1, then the conditions of

Lemma 3.43 hold.

Proof. We separate to cases according to the type of difficult structure. In all cases we

show how to select the sets xi such that the first three conditions hold and X` contains

a single unprovided variable v. Since v is not provided and Q2 is free-connex, either

there is no body-homomorphism h from Q2 to Q1, or v 6∈ h(free(Q2)). In both cases,

Condition 4 holds.

In case of a tetra, denote its variables by {x1, . . . , xk} such that xk is not provided,

and set Xi = {xi}. Since no edge contains all tetra variables, Condition 1 holds.

Condition 2 trivially holds since the sets Xi are of size one. Condition 3 holds since the

tetra edges form the connectors of {x1, x2}, {x2, . . . , xk}, and {x1, x3, . . . , xk}.
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In case of a chordless cycle, denote it as x1, . . . , xk, x1 such that xk is not provided.

Set X1 = {x1, .., xk−2}, X2 = {xk−1}, and X3 = {xk}. As the cycle is chordless,

Condition 1 holds. Condition 2 holds due to the path x1, .., xk−2 that lies on the

cycle. Condition 3 holds due to the three edges containing {xk−2, xk−1}, {xk−1, xk} and

{xk, x1} on the cycle.

In case of a free-path, we further split into two cases. If an end variable of the path

is not provided, denote the path by x, z1, . . . , zk, y such that y is not provided. We

set X1 = {x}, X2 = {z1, .., zk} and X3 = {y}. Otherwise, if both end variables are

provided, a middle variable is not provided. Denote this variable by z, and the path by

x1, . . . , xk, z, y1, . . . , ym. We set X1 = {x1, . . . , xk}, X2 = {y1, . . . , ym} and X3 = {z}.
In both cases, Condition 1 holds since the path is chordless and so no atom contains

both a variable containing x in the name and a variable containing y. Condition 2

holds due to the relevant subpaths. For Condition 3, the connection between the sets

containing the end variables is done through the connector free(Q1); this is possible

since the remaining set contains only existential variables. The other two connectors

appear on the path.

Note that Lemma 3.43 and Lemma 3.45 do not require the tractable CQ to be

self-join-free. As an example, consider the following modification of Example 3.36.

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, t1), R3(y, t2), R3(w, t3).

The reduction can be applied here with X1 = {x}, X2 = {y}, and X3 = {z}.

Completing the Characterization

We next show that, in case the difficult CQ is binary, if the UCQ is not covered by

Lemma 3.45, then the union is necessarily in Enum〈lin, const〉. Recall that a UCQ is

tractable if it has a free-connex union extension, and that a difficult CQ has difficult

structures (a free-path, a chordless cycle or a tetra). We define a process of generating

a union extension of a difficult CQ by repeatedly adding virtual atoms that correspond

to difficult structures (thus eliminating the difficult structures). This is similar to the

approach we took in proving Lemma 3.26.

Definition 3.46. Let Q1 be a CQ in a union. We define a resolution step over Q1: if

there is a difficult structure in Q1 with the variables V , and V is provided by a CQ

Q2 ∈ Q, extend Q1 with a virtual atom with the variables V . Resolving a CQ in a union

is applying resolutions steps until it is no longer possible. Similarly, a resolved UCQ is

one where each CQ is resolved. When a query Q has been resolved, we denote it Q+.

We aspire to show that whenever the resolution process does not result in a free-

connex union extension, the reduction from UTD can be applied. First, we give two

observations regarding the relationship between the original and the resolved queries.
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Lemma 3.47. Let Q = Q1 ∪ Q2, and let Q+
1 be a union extension of Q1 due to a

body-homomorphism h from Q2 to Q1. If there is a path P+ between v1 and vk in Q+
1 ,

then there is a simple chordless path between v1 and vk in Q1 that goes only through

variables of var(P+) ∪ h(free(Q2)).

Proof. Every edge in Q+
1 either: (1) is an edge of Q1; (2) contains the variables of

a difficult structure with variables contained in h(free(Q2)). Note that all difficult

structures are connected. First obtain a path in Q1 that starts and ends in the same

variables as P+: replace every new edge of Q+
1 in P+ with a corresponding path through

the difficult structure that it covers. Then, take a simple chordless path contained in

this path.

Lemma 3.48. Let Q = Q1 ∪ Q2, and let Q+
1 be a union extension of Q1 due to a

body-homomorphism h from Q2 to Q1. If there is a path P+ in Q+
1 from a variable v to

a variable in free(Q1), then there is a simple chordless path P in Q1 from v to a variable

u ∈ free(Q1) such that var(P ) ∩ free(Q1) = {u}, and var(P ) ⊆ var(P+) ∪ h(free(Q2)).

Proof. First, take the simple chordless path P ′ in Q1 that is obtained from P+ using

Lemma 3.47. Then, take the subpath of P ′ between v and the first variable in free(Q1).

Such a variable exists because P ′ ends in a free variable.

We also need to conclude the existence of chordless cycles from that of simple cycles.

Lemma 3.49 may seem trivial for graphs, but it does not hold for hypergraphs. In fact,

this difference between graphs and hypergraphs is the main reason why we cannot show

Lemma 3.50 for UCQs with general relations (of arity larger than 2).

Lemma 3.49. If a vertex v appears in a simple cycle in a graph, then v also appears

in a simple chordless cycle.

Proof. Denote the cycle by v, v2, . . . , vm, v. Take a chordless path contained in v2, . . . , vm,

and denote it v2 = u1, . . . , uk = vm. Let t > 1 be the smallest such that ut is a neighbor

of v. Such t exists since um is a neighbor of v. Then, the cycle v, u1, . . . , ut, v is chordless.

We now show that in the restricted case of binary relations, when all variables

that participate in difficult structures are provided, the resolution process given in

Definition 3.46 results in a free-connex CQ.

Lemma 3.50. Let Q = Q1∪Q2 where Q1 is difficult and contains only unary or binary

relations, Q2 is tractable, and Q2 provides all variables of the difficult structures in Q1.

Then, the resolved Q+ is free-connex.

Proof. Let Q+
1 be the resolved Q1, and assume by contradiction that Q+

1 is not free-

connex. Thus, it contains a difficult structure. Since Q2 provides all variables of the
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difficult structures, by construction, Q+
1 has no difficult structures that also appear in

Q1. By Lemma 3.44, there is a single body-homomorphism h from Q2 to Q1. By the

definition of the resolution process, h(free(Q2)) does not contain all variables of any

difficult structure in Q+
1 .

We first show that Q+
1 is acyclic. Assume by contradiction that it is cyclic, then

it either contains a chordless cycle or a tetra of size k > 3. The first case is that it

contains a tetra of size k. Since Q+
1 is resolved, some variable of the tetra is not in

h(free(Q2)). Thus, all atoms of Q+
1 that contain this variable appear in Q1. These

atoms are therefore binary, and k = 3. We now treat the case that the new structure

is a simple chordless cycle. Denote the cycle by x1, . . . , xk such that xk 6∈ h(free(Q2)).

Note that xk−1, xk, x1 are distinct variables. Since xk is not provided, we know that the

edges containing {xk−1, xk} and {xk, x1} are original. According to Lemma 3.47, due to

the path x1, . . . , xk−1 and since xk 6∈ h(free(Q2)), there is a simple path between x1 and

xk−1 in Q1 that does not go through xk. This, together with the two edges {xk−1, xk}
and {xk, x1}, results in a simple cycle x1, . . . , xk−1, xk in Q1. According to Lemma 3.49,

xk appears in a chordless cycle in Q1. Since xk 6∈ h(free(Q2)), this contradicts our

assumptions. Therefore Q+
1 is acyclic.

Since Q+
1 is acyclic but not free-connex, it contains a free-path which we denote by

P+ = x1, . . . , xk. We have that xj 6∈ h(free(Q2)) for some 1 ≤ j ≤ k. We now prove

that xj appears in a difficult structure in Q1. This would mean that xj ∈ h(free(Q2)),

which is a contradiction.

First assume that xj is at an end of the path; without loss of generality, j = 1. Since

xj 6∈ h(free(Q2)), every edge containing xj in Q+
1 also appears in Q1, and so there is an

edge {x1, x2} in Q1. Take the path x2 = t1, . . . , tm that is obtained from the subpath

x2, . . . , xk of P+ using Lemma 3.48. Note that this path does not contain x1, and it

is a simple chordless path of length 1 or more that ends with a free variable, and all

other variables are not free. If there is a neighbor ti of x1 with i > 1, take i to be the

minimal such index, and x1, t1, . . . , ti, x1 is a chordless cycle. Otherwise, x1, t1, . . . , tm

is a chordless path, and it is a free-path.

We now address the case that 1 < j < k. Apply Lemma 3.48 as before on both sides

of P+ to obtain chordless simple paths xj+1 = t1, . . . , tm and xj−1 = v1, . . . , vn that do

not contain xj , where vn and tm are free, and the other variables are projected. Note

that since xj−1, xj , xj+1 is part of a simple chordless path in Q1, these three variables

are distinct. If the two paths share a variable or neighbors, xj is part of a simple

chordless cycle. Otherwise, vn, . . . , xj−1, xj , xj+1, . . . , tm is a free-path.

We can now show that free-connex union extensions capture all tractable UCQs

containing one tractable CQ and one difficult CQ when the relations are binary.

Theorem 3.51. Let Q = Q1 ∪Q2 be a non-redundant UCQ where Q1 is difficult and

contains only unary or binary relations and Q2 is tractable. If Q does not admit a

free-connex union extension, then Q 6∈ Enum〈lin, const〉, assuming UTD.
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Proof. According to Lemma 3.50, since Q does not admit a free-connex union extension,

Q2 does not provides all variables of the difficult structures in Q1. According to

Lemma 3.45, Lemma 3.43 can be applied, and Q 6∈ Enum〈lin, const〉 assuming UTD.

Beyond Binary CQs

Lemma 3.50 does not hold when we allow general arities. However, this does not mean

that Theorem 3.51 does not hold. Here is an example for when Lemma 3.50 does not

apply, but we can still show that the UCQ is hard assuming UTD.

Example 3.52. [CK19b, Example 38] Consider the union of the following:

Q1(x2, . . . , xk)←{Ri(x1, ..., xi−1, xi+1, ..., xk) | 1 ≤ i ≤ k − 1}

Q2(x2, . . . , xk)←R1(x2, . . . , xk−1, x1), R2(xk, x3, . . . , xk−1, v).

The query Q1 is cyclic and Q2 is free-connex. Even though Q2 provides {x1, . . . , xk−1},
adding a virtual atom with these variables does not result in a free-connex extension, as

this extension is exactly a tetra.

Lemma 3.43 can be applied here by setting Xi = {xi}. Condition 1 holds since

no edge contains {x1 . . . , xk}. Condition 2 holds trivially since the sets are of size

one. Condition 3 holds due to the edges {x1 . . . , xk} \ {x1}, {x1 . . . , xk} \ {x2}, and

{x1 . . . , xk} \ {x3}. Condition 4 holds since xk 6∈ h(free(Q2)).

It is left for future work to try and prove Theorem 3.51 for general arity.

Replacing Previous Assumptions

In this section we show that, if we assume UTD, we can conclude the previously known

hardness results without making additional assumptions. In Section 3.2 we showed

that if a union of two difficult CQs does not admit a free-connex union extension,

then it is intractable assuming BMM, Hyperclique and 4-clique. We show that

BMM and Hyperclique can always be replaced with assuming UTD, and we show

an alternative reduction for the cases that rely on 4-clique. Thus, we prove that this

holds independently of additional assumptions if we assume UTD.

Proposition 3.53. BMM is a consequence of UTD.

Proof. Boolean matrix multiplication can be used to detect triangles in a tripartite

graph: Consider the multiplication of the adjacency matrix of V1 and V2 with the

adjacency matrix of V2 and V3. Every result is a path of length two, and we can check in

constant time whether its end-points are neighbors. Therefore, we can find all triangles

in the same time it takes to multiply the matrices. If BMM does not hold, it is possible

to multiply two Boolean n × n matrices in O(n2) time, and so it is possible to find

triangles in a tripartite graph of n vertices in each set in time O(n2). This contradicts

UTD with α = 1.
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Proposition 3.54. Hyperclique is a consequence of UTD.

Proof. Assume by contradiction that UTD holds but Hyperclique does not. If

Hyperclique does not hold, there exists k ≥ 3 such that it is possible to determine

the existence of a k-hyperclique in a (k − 1)-uniform hypergraph with m nodes in time

O(mk−1). Set α = 1
k−2 . Assume we are given a tripartite graph g with node sets

V1,V2,V3 and edges sets E1,2, E2,3, E1,3 where |V1| = |V2| = nα and |V3| = n. We now

construct a hyperclique instance g′.

We encode the vertices of V3 as U3 × · · · × Uk such that |U3| = . . . = |Uk| = nα.

For every edge (v1, v3) ∈ E1,3, add an edge {v1, u3, . . . , uk} where u3, . . . , uk is the

representation of v3. For every edge (v2, v3) ∈ E2,3, add an edge {v2, u3, . . . , uk} where

u3, . . . , uk is the representation of v3. For every edge (v2, v3) ∈ E1,2, add an edge

containing v2, v3 and every combination of k − 3 nodes from distinct sets in U3, · · · , Uk.

This results in a (k − 1)-uniform hypergraph with knα nodes, and k-hypercliques in

this construction correspond exactly to triangles in the tripartite graph. Then, we

can detect a k-hyperclique in g′ and a triangle in g in time O((knα)k−1) = O(n1+α) in

contradiction to UTD.

Let us now prove the equivalent of Lemma 3.22 based on UTD.

Lemma 3.55. Let Q = Q1 ∪ Q2 be a union of self-join-free body-isomorphic acyclic

CQs. If Q1 and Q2 are free-path guarded and Q1 is not bypass guarded, then Enum〈Q〉
is not in Enum〈lin, const〉, assuming UTD.

Proof. We saw in Lemma 3.22 that there exist variables z0, z1, z2, u such that the

following holds: z0, z2 ∈ free(Q1), z1 6∈ free(Q1), u 6∈ free(Q2), there are two atoms

containing {z0, z1, u} and {z1, z2, u}, and there is no atom containing {z0, z2}. Use

Lemma 3.43 with X1 = {z0}, X2 = {z2}, X3 = {z1}, and X4 = {u}. Since there is no

atom containing both z0 and z2, Condition 1 holds. Condition 2 trivially holds since

the sets Xi are of size one. Condition 3 holds due to the atoms containing {z0, z1, u}
and {z1, z2, u}, and since z0, z2 ∈ free(Q1). The free variables form a valid connector

since z1 6∈ free(Q1). Since u 6∈ free(Q2), Condition 4 holds. Therefore, Enum〈Q〉 is not

in Enum〈lin, const〉.

Since all hardness results in Section 3.2 other than Lemma 3.22 rely on BMM or

Hyperclique, we have proved that all of the results of that section also apply when

replacing the assumptions with UTD. In particular, the following holds.

Theorem 3.56. Let Q = Q1∪Q2 be a non-redundant union of difficult CQs. If Q does

not have a free-connex union extension, then Enum〈Q〉 6∈ Enum〈lin, const〉, assuming

UTD.

By combining Theorem 3.56 with Theorem 3.51 and Theorem 3.9, we get a full

characterization based on UTD for a union of two binary CQs.
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Corollary 3.57. Let Q = Q1 ∪Q2 be a non-redundant union of binary CQs.

• If Q has a free-connex union extension, then Enum〈Q〉 ∈ Enum〈lin, const〉.
• Otherwise, Q does not have a free-connex union extension and Enum〈Q〉 is not

in Enum〈lin, const〉, assuming UTD.

3.4 Additional Notes

We devote this section to discuss some implications of the work presented in this chapter

when the settings slightly differ from the ones assumed so far. In Section 3.4.1 we

discuss unions of conjunctive queries with disequalities, and in Section 3.4.2 we discuss

the case where we want to restrict the space requirements of our algorithm.

3.4.1 Unions of CQs with Disequalities

In this section we discuss the enumeration complexity of unions of CQs with disequalities.

In the case of individual CQs with disequalities, the disequalities have no effect on

the enumeration complexity. That is, one can simply ignore the disequalities, and the

remaining CQ is tractable if and only if it is free-connex (under the same assumptions

as in Theorem 2.1) [BDG07]. A natural question is whether this happens also with

UCQs. We next show that it does not, and some tractable UCQs become intractable

with the addition of disequalities.

Example 3.58. Let Q = Q1 ∪Q2 with

Q1(x, y, z, w)←R1(x, y), R2(y, z), R3(z, z), R4(x, z), R5(w)

Q2(x, y, z, w)←R1(x, y), R3(w, z), z 6= w

We can show this union is hard by encoding triangle detection to the cycle in Q1 as

in the proof of Theorem 2.1. This construction assigns R3 with only pairs of the same

vertex. Due to the disequality, Q2 has no answers over this construction, so finding an

answer to the union in linear time detects a triangle in linear time. Therefore, Q is

intractable assuming Hyperclique. If there was no disequality, Q2 would provide the

cycle variables to Q1 and the UCQ would become tractable. �

This example shows that, unlike the known dichotomy for CQs, the positive results

for UCQs presented in this chapter do not carry over to UCQs with disequalities by

simply ignoring the disequalities. That is, a union extension, as defined for UCQs

without inequalities, does not suffice to ensure tractability for UCQs with inequalities.

Nevertheless, a simple adjustment of the definitions and proofs given in Section 3.1

reveals cases where a UCQ with disequalities containing hard CQs is easy.

Definition 3.59. Let Q1, Q2 be CQs with disequalities.

• A body-homomorphism from Q2 to Q1 is a mapping h : var(Q2)→ var(Q1) where:

– for every atom R(~v) of Q2, we have R(h(~v)) in Q1.

– for every disequality v 6= u of Q2, we have h(v) 6= h(u) in Q1.
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• We say that Q2 supplies a set V of variables if Q2 is free-connex and V ⊆ free(Q2).

Note that the definition of a body-homomorphism now takes the disequalities into

account. Note also that the definition of supplying variables here is simpler than before

as we require that the supplying CQ will be free-connex1. We set the definition of a

union extension as in Section 3.1 (but using the new definition of supplied variables and

body-homomorphisms). Using these definitions, we can get a result similar to that of

Theorem 3.9. We first prove the equivalent of Lemma 3.6 in our settings.

Lemma 3.60. Let Q2 be a CQ with disequalities that supplies the variables ~v2. Given

an instance I, one can compute with linear time preprocessing and constant delay

M = Q2(I), and M can be translated in time O(|M |) to a relation RM such that:

for every CQ Q1 with a body-homomorphism h from Q2 to Q1 and for every answer

µ1 ∈ full(Q1)(I), there is the tuple µ1(h(~v2)) ∈ RM .

Proof. Let Q1, Q2 be CQs with disequalities such that Q2 provides V1 to Q1. Since Q2

is free-connex, it can be answered with linear preprocessing and constant delay [BDG07].

We define RM = {µ2(~v2) | µ2 ∈ Q2(I)}. Let Q1 be a CQ such that there is a

body-homomorphism h from Q2 to Q1, and let µ1 ∈ full(Q1)(I). Since h is a body-

homomorphism, for every atom R(~v) in Q2, R(h(~v)) is an atom in Q1, and for every

disequality v 6= u of Q2, h(v) 6= h(u) is in Q1. Since µ1 is an answer to full(Q1), for

such atoms and disequalities µ1(h(~v)) ∈ RI and µ1(h(v)) 6= µ1(h(u)). This means that

µ1 ◦h|free(Q2) is an answer to Q2, so there exists µ2 ∈ Q2(I) such that µ1 ◦h|free(Q2) = µ2.

By construction, µ1(h(~v2)) = µ2(~v2) ∈ RM .

With Lemma 3.60 at hand, we can apply the proof of Theorem 3.9 as is. We only

need to use Lemma 3.60 instead of Lemma 3.6. This proves the following result.

Theorem 3.61. Let Q be a union of CQ with disequalities. If Q has a free-connex

union extension, then Enum〈Q〉 ∈ Enum〈lin, const〉.

Example 3.62. Let Q = Q1 ∪Q2 with

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w), x 6= z and

Q2(x, y, w)← R1(x, y), R2(y, w), x 6= y

This is the same as Example 1.2 except for the added disequalities. Without the

disequalities this union is easy as Q2 supplies {x, y, w}, and adding a virtual atom with

a union extension to Q1 results in a free-connex form. Since Q2 is free-connex and the

disequality of Q2 maps to that of Q1 using the body-homomorphism, this union is easy

even with the disequalities according to Theorem 3.61. �

1This is a restriction we impose for simplicity, and it is possible that a more refined condition may
lead to additional tractable cases. However, this seems to require going into the details of the algorithm
for CQs with disequalities, and it is left for future work.
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Theorem 3.61 can be used also to show the tractability of UCQs that are not

naturally of the form defined above. For example, in the case of the last example, the

union is easy even without the disequality in Q1.

Example 3.63. Let Q = Q1 ∪Q2 with

Q1(x, y, w)← R1(x, z), R2(z, y), R3(y, w) and

Q2(x, y, w)← R1(x, y), R2(y, w), x 6= y

We can partition the answers to Q1 to those that assign the same values to x and z and

those that do not. Q is equivalent to Q′ = Q6=1 ∪Q=
1 ∪Q2 with

Q 6=1 (x, y, w)← R1(x, z), R2(z, y), R3(y, w), x 6= z and

Q=
1 (x, y, w)← R1(x, x), R2(x, y), R3(y, w) and

Q2(x, y, w)← R1(x, y), R2(y, w), x 6= y

Here, Q6=1 ∪Q2 can be enumerated efficiently as in Example 3.62. Since Q=
1 is free-connex,

it can also be answered efficiently. Using the Cheater’s Lemma, these answers can be

combined to conclude that Enum〈Q〉 ∈ Enum〈lin, const〉. �

In conclusion, unlike individual CQs, the complexity of answering unions of CQs

changes with the addition of disequalities. We proved the tractability of some unions

with disequalities that can be easily concluded from the results of this chapter, but

identifying all of the tractable cases is left for future work.

3.4.2 Note on Space Usage

In this chapter, we only considered time bounds. The class CD◦Lin describes the

problems that can be solved with the same time bounds, but with the additional

restriction that the available space for writing during the enumeration phase is constant.

Evaluating free-connex CQs is in CD◦Lin, and Kazana offers a comparison between

Enum〈lin, const〉 and CD◦Lin [Kaz13, Section 8.1.2]. All lower bounds presented in this

chapter naturally hold for CD◦Lin as CD◦Lin ⊆ Enum〈lin, const〉 by definition. The

tractability of unions containing only free-connex CQs, as explained in Theorem 3.1, also

holds for this class. However, the memory we used in our techniques for the tractable

UCQs that do not contain only tractable CQs may increase in size by a constant with

every new answer. An interesting question is whether we can achieve the same time

bounds when restricting the memory according to CD◦Lin.

The first reason we use polynomial space is to regularize the delay and avoid

duplicates. This is achieved in the Cheater’s Lemma (Lemma 3.4) by storing all results

we produce. We should mention in that context that regularizing the delay is arguably

not of practical importance. In practice, once we have an answer, we will probably

want to use it immediately. For this reason, one might be satisfied with simply using a

relaxed complexity measure which captures the fact that an algorithm performs ”just

as good” as linear preprocessing and constant delay when given enough space: linear

partial time (see Definition 3.2). The Cheater’s Lemma shows that, whenever we have
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an algorithm A that runs in linear partial time, there is a linear preprocessing and

constant delay algorithm A′ that uses additional space and computes the same results,

where every result in A is returned no later than the same result in A′. In fact, if we

denote by LinPartial the class of enumeration problems that can be solved by a linear

partial time algorithm, LinPartial = Enum〈lin, const〉. Please note that this does not imply

LinPartial = CD◦Lin, as we currently do not know whether Enum〈lin, const〉 = CD◦Lin.

The other reason that we use large amounts of space is that we need to store the

generated relations that correspond to the virtual atoms in order to evaluate the union

extension as specified in Theorem 3.9. The discussion above implies that it makes

sense to focus on eliminating this fundamental reason. This seems to require a different

approach than the one presented in this chapter.

Example 3.64.

Q1(x, y, z, w)←R1(x, y), R2(y, z), R3(z, x), R4(x,w)

Q2(x, y, z, w)←R1(x, t1), R2(y, t2), R3(z, t3), R4(w, t4)

Q1 is cyclic, so it is not possible to find an answer to it in linear time. However, since Q2

is free-connex and provides the cycle variables {x, y, z}, and since Q1 becomes free connex

when adding an atom with these variables, the union is solvable in linear preprocessing

time and constant delay by saving the results of Q2 as a relation as suggested in

Section 3.1. In this case, there is also a way of solving it with no additional space: use

CDY to solve Q2 efficiently; for every answer (a, b, c, d) to Q2, check if a = d, (a, b) ∈ R1,

(b, c) ∈ R2 and (c, a) ∈ R3; if all these conditions are met, go over all tuples (a, e) ∈ R4

and output (a, b, c, e). This finds all answers to Q1 ∪Q2 with constant time per answer.

However, if an answer belongs to both CQs, we print it twice. The duplicates can

easily be avoided by replacing R4 in Q1 with a modified version, lacking the tuples that

cause duplicates. During preprocessing, compute R′4 = R4 \ {(a, e) | ∃t s.t. (e, t) ∈ R4}.
During enumeration, for every qualifying answer (a, b, c, d) to Q2, go over all tuples

(a, e) ∈ R′4 and output (a, b, c, e). �

Example 3.64 shows that reducing the space requirements is sometimes possible.

We do not know however whether this is the case for all UCQs with a free-connex union

extension. Consider Example 1.2. The same approach would mean that for every answer

(a, b, c) to Q2 we would go over all tuples (c, d) ∈ R3 and print (a, c, d). The problem

here is that we would print many duplicates: every answer (a, c, d) would be produced

as many times as there are different b values with (a, b, c) ∈ Q2(I).

In conclusion, UCQs that contain intractable CQs can sometimes be made easy

by using virtual atoms containing provided variables. In this chapter, we proposed

instantiating a relation that corresponds to each virtual atom during enumeration. This

instantiation can sometimes be avoided, but it requires a different approach, and it is

left for future work to find when this can be done. The discussion above also gives rise

to a possible relaxation that can be considered a first step: can we evaluate such UCQs

efficiently with only constant writing memory available during enumeration, when we
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allow for linear partial time and a constant number of duplicates per answer? Note

that in example 3.64 we do not need this relaxation, so another interesting question

is whether this relaxation is useful for our task or can all UCQs that can be answered

with this relaxed measure also be answered with linear preprocessing and constant delay

without extra space.
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Chapter 4

Enumerating Query Answers in

Random Order

In the previous chapter, we discussed the question of when UCQs can be answered

efficiently, but we did not address an important aspect: the order in which the answers

are emitted. Measuring the complexity in terms of delay rather than total time stems

from the assumption that partial results are useful, but if we make no requirements

on the order, the first results may be very similar to one another and give very little

information on what we can expect from the results to come. In this chapter, we require

the intermediate results to be representative of the entire solution space. To this aim,

we consider the task of enumerating answers in provably random order. We show how a

uniformly random permutation of the answers can be achieved assuming we can perform

random access to the query answers, and we compare the complexity of these two tasks

with that of enumeration with no order requirements in the cases of CQs and UCQs.

As in the previous chapter, we again assume a general schema with no dependencies.

This chapter includes joint work with Shai Zeevi, Christoph Berkholz, Alessio Conte,

Benny Kimelfeld, and Nicole Schweikardt. Some of the findings of this chapter were

published in the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems [CZB+20].

Organization In Section 4.1, we define the three tasks related to our goal: (1)

Enumeration, as covered in the previous chapter; (2) Random Permutation, with the

additional order requirement; (3) Random Access, which simulates the ability to read

the answers from a precomputed array. We discuss the relations between the three

tasks, and show how random access can be used to achieve random permutation. In

Section 4.2, we show which CQs admit efficient algorithms for these three tasks, with

logarithmic time per answer after linear preprocessing. Free-connex CQs admit efficient

random access, and so they are tractable with respect to all three tasks. Since self-join-

free non-free-connex CQs are intractable with respect to enumeration, they are also

intractable with respect to the other two tasks. In Section 4.3, we address UCQs and
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show that, unlike for CQs, the three tasks do not behave similarly when inspecting which

queries admit efficient algorithms. A union of free-connex CQs is always tractable with

respect to enumeration, but it may not be tractable with respect to random access. We

then show two solutions for unions of free-connex CQs: an efficient random-permutation

algorithm that can only be applied for unions with a tractable intersection, and an

algorithm that can always be applied but guarantees a relaxed measure of logarithmic

delay in expectation.

4.1 The Three Tasks

In this section, we define classes of enumeration problems and discuss the relationship

between them.

4.1.1 Definitions

We write d to denote a function from the positive integers N≥1 to the non-negative

reals R≥0, and d = const, d = lin, d = logc (for c ≥ 1) mean d(n) = 1, d(n) = n,

d(n) = logc(n), respectively. We define the following generalization of Enum〈lin, const〉.

Definition 4.1. Let d be a function from N≥1 to R≥0. We define Enum〈lin, d〉 to be

the class of enumeration problems for which there exists an enumeration algorithm A
such that for every input I it holds that tp ∈ O(|I|) and td ∈ O(d(|I|)). Furthermore,

Enum〈lin, polylog〉 is the union of Enum〈lin, logc〉 for all c ≥ 1.

A random-permutation algorithm for an enumeration problem P is an enumeration

algorithm where every emission is done uniformly at random. That is, at every emission,

every not yet emitted answer has equal probability of being emitted. As a result, if

|P (I)| = n, every ordering of the answers P (I) has the probability 1
n! of representing

the order of printed answers.

Definition 4.2. Let d be a function from N≥1 to R≥0. We define REnum〈lin, d〉 to

be the class of enumeration problems for which there exists a random-permutation

algorithm A such that for every input I it holds that tp ∈ O(|I|) and td ∈ O(d(|I|)).
Furthermore, REnum〈lin,polylog〉 is the union of REnum〈lin, logc〉 for all c ≥ 1.

Fact 4.3. By definition, REnum〈lin, d〉 ⊆ Enum〈lin, d〉 for all d.

A random-access algorithm for an enumeration problem P is an algorithm A con-

sisting of a preprocessing phase and an access routine. The preprocessing phase builds

a data structure based on the input I. Afterwards, the access routine may be called any

number of times, and it may use the data structure built during preprocessing. There

exists an order of P (I), denoted a1, ..., an and called the enumeration order of A such

that, when the access routine is called with parameter i, it returns ai if 1 ≤ i ≤ n, and
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an error message otherwise. Note that there are no constraints on the order as long as

the routine consistently uses the same order in all calls. Using the access routine with

parameter i is called accessing ai; the time it takes to access an answer is called access

time and denoted ta.

Definition 4.4. Let d be a function from N≥1 to R≥0. We define RAccess〈lin, d〉 to be

the class of enumeration problems for which there exists a random-access algorithm

A such that for every input I the preprocessing phase takes time tp ∈ O(|I|) and

the access time is ta ∈ O(d(|I|)). Furthermore, RAccess〈lin,polylog〉 is the union of

RAccess〈lin, logc〉 for all c ≥ 1.

Successively calling the access routine for i = 1, 2, 3, . . . leads to:

Fact 4.5. By definition, RAccess〈lin, d〉 ⊆ Enum〈lin, d〉 for all d.

A two-way-access algorithm for an enumeration problem P is an enhancement of a

random-access algorithm with the inverse operation: given an element a, the inverted-

access operation returns i such that the ith answer in the random-access is a. If the given

element is not an answer, then the algorithm indicates so by returning “not-an-answer.”

The time it takes to perform the inverted-access is denoted tr.

Definition 4.6. Let d be a function from N≥1 to R≥0. We define TWAccess〈lin, d〉
to be the class of enumeration problems for which there exists a two-way-access algo-

rithm A such that for every input I the preprocessing phase takes time tp ∈ O(|I|)
and the access time and inverted-access time are ta, tr ∈ O(d(|I|)). Furthermore,

TWAccess〈lin,polylog〉 is the union of TWAccess〈lin, logc〉 for all c ≥ 1.

Fact 4.7. By definition, TWAccess〈lin, d〉 ⊆ RAccess〈lin, d〉 for all d.

Next, we discuss the connection between the classes RAccess〈lin, d〉 and REnum〈lin, d〉.

4.1.2 Random-Access and Random-Permutation

We now show that, under certain conditions, it suffices to devise a random-access

algorithm in order to obtain a random-permutation algorithm. To achieve this, we need

to produce a random permutation of the indices of the answers.

Note that the trivial approach of producing the permutation upfront will not work:

the length of the permutation is the number of answers, which can be super linear in

the size of the input; however, we need to produce the first answer after linear time in

the size of the input.

Instead, we adapt a known random-permutation algorithm, the Fisher-Yates Shuf-

fle [Dur64], so that it works with constant delay after constant preprocessing time.

The original version of the Fisher-Yates Shuffle (also known as Knuth Shuffle) [Dur64]

generates a random permutation in time linear in the number of items in the permuta-

tion, which in our setting is polynomial in the size of the input. It initializes an array
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Algorithm 4.1 Random permutation of the indices 0, . . . , n−1

1: assume a[0], ..., a[n−1] are uninitialized
2: for i in 0, . . . , n−1 do
3: choose j uniformly from i, . . . , n−1
4: if a[i] is uninitialized then
5: a[i] = i

6: if a[j] is uninitialized then
7: a[j] = j

8: swap a[i] and a[j] ; output a[i]

containing the numbers 0, . . . , n−1. Then, at each step i, it chooses a random index, j,

greater than or equal to i and swaps the chosen cell with the ith cell. At the end of

this procedure, the array contains a random permutation. Proposition 4.8 describes an

adaptation of this procedure that runs with constant delay and constant preprocessing

time in the RAM model.

Proposition 4.8. A random permutation of 0, . . . , n−1 can be generated with constant

delay and constant preprocessing time.

Proof. Algorithm 4.1 generates a random permutation with the required time constraints

by simulating the Fisher-Yates Shuffle. Conceptually, it uses an array a where at first

all values are marked as “uninitialized”, and an uninitialized cell a[k] is considered

to contain the value k. At every iteration, the algorithm prints the next value in the

permutation.

Denote by aj the value a[j] if it is initialized, or j otherwise. We claim that in

the beginning of the ith iteration, the values ai, · · · , an−1 are exactly those that the

procedure did not print yet. This can be shown by induction: at the beginning of

the first iteration, a0, . . . , an−1 represent 0, . . . , n−1, and no numbers were printed; at

iteration i−1, the procedure stores in a[i−1] the value that it prints, and moves the

value that was there to a higher index.

At iteration i, the algorithm chooses to print uniformly at random a value between

ai, · · · , an−1, so the printed answer at every iteration has equal probability among all

the values that have not yet been printed. Therefore, Algorithm 4.1 correctly generates

a random permutation.

The array a can be simulated using a lookup table that is empty at first and is

assigned with the required values when the array changes. In the RAM model with

uniform cost measure, accessing such a table takes constant time. Overall, Algorithm 4.1

runs with constant delay (and constant preprocessing time). Note that O(n) space is

used to generate a permutation of n numbers.

With the ability to efficiently generate a random permutation of {0, . . . , n−1},
whenever we have available a random-access algorithm for an enumeration problem and
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if we can also tell the number of answers, then we can build a random-permutation

algorithm as follows: we can produce, on the fly, a random permutation of the indices

of the answers and output each answer using the access routine.

We say that an enumeration problem has polynomially many answers if the number

of answers per input I is bounded by a polynomial in the size of I. In particular, if P is

the evaluation of a CQ or a UCQ, then P has polynomially many answers.

Theorem 4.9. If P ∈ RAccess〈lin, logc〉 and P has polynomially many answers, then

P ∈ REnum〈lin, logc〉, for all c ≥ 1.

Proof. Let P be an enumeration problem in RAccess〈lin, logc〉, and let A be the as-

sociated random-access algorithm for P . Given an input I, our random-permutation

algorithm performs the preprocessing phase of A and then, still during its preprocessing

phase, computes the number of answers |P (I)| as follows. We can tell whether |P (I)| < k

for any fixed k by trying to access the kth answer and checking if we get an out of

bound error. We can use this to do a binary search for the number of answers using

O(log(|P (I)|)) calls to A’s access procedure. Since |P (I)| is polynomial in the size of

the input, log(|P (I)|) = O(log(|I|)). Each access costs time O(logc(|I|)). In total, the

number |P (I)| is thus computed in time O(logc+1(|I|)), which still is in O(|I|).
During the enumeration phase, we use Proposition 4.8 to generate a random permu-

tation of 0, . . . , |P (I)|−1 with constant delay. Whenever we get the next element i of

the random permutation, we use the access routine of A to access the (i+1)th answer

to our problem. This procedure results in a random permutation of all the answers with

linear preprocessing time and delay O(logc).

4.2 CQs

In this section, we discuss random access for CQs. For enumeration, the proof of

Theorem 2.1 can also be used to reason about polylogarithmic delay. Theorem 4.10 is

similar to Theorem 2.1, except we use sparseBMM instead of BMM and we get the

lower bound for Enum〈lin,polylog〉 instead of Enum〈lin, const〉.

Theorem 4.10 ([BDG07, BB13]). Let Q be a CQ. If Q is free-connex, then Enum〈Q〉
is in Enum〈lin, const〉. Otherwise, if it is also self-join-free, then Enum〈Q〉 is not in

Enum〈lin, polylog〉 assuming sparseBMM and Hyperclique.

Due to Theorem 2.1, we know that any free-connex CQ is in Enum〈lin, const〉 and

that the first answer to self-join-free cyclic CQs cannot be found in linear time assuming

Hyperclique. Regarding self-join-free acyclic non-free-connex CQs, we can perform

the same reduction as in Theorem 2.1, but use a different variant of the complexity

hypothesis to account for the logarithmic delay. Using the reduction defined there,

if such a CQ is in Enum〈lin, logc〉, then any two Boolean matrices of size n × n can

be multiplied in O(m1 + m2 + m3 · logc(n)) time, where m1, m2, and m3 are the
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number of non-zero entries in A, B and AB, respectively. sparseBMM states that this

multiplication cannot be done in (m1 +m2 +m3)1+o(1) time, so this is a contradiction

and it proves Theorem 4.10.

An implication of Theorem 4.10 is that free-connex CQs can be answered with

logarithmic delay. Since Brault-Baron [BB13] proved that there exists a random-access

algorithm that works with linear preprocessing and logarithmic access time, we get a

strengthening of that fact: free-connex CQs belong to RAccess〈lin, log〉. According to

Theorem 4.9, this also shows the tractability of a random-order enumeration, that is,

membership in REnum〈lin, log〉.

4.2.1 Two-Way-Access Algorithm

We next present a two-way-access algorithm for free-connex CQs. Compared to Brault-

Baron [BB13], the following random-access algorithm is simpler and better lends itself

to a practical implementation. In addition, the inverted-access routine that we introduce

is needed for our results on UCQs in Section 4.3.

To proceed, we use the following folklore result.

Proposition 4.11. For any free-connex CQ Q over a database D, one can compute in

linear time a full acyclic join query Q′ and a database D′ such that Q(D) = Q′(D′) and

D′ is globally consistent w.r.t. Q′.

This reduction was implicitly used in the past as part of CQ answering algorithms (cf.,

e.g., [IUV17, OZ15]). To prove it, the first step is performing a full reduction to remove

dangling tuples (tuples that do not agree with any answer) from the database. This

can be done in linear time as proposed by Yannakakis [Yan81b] for acyclic join queries.

Then, we utilize the fact that Q is free-connex, which enables us to drop some atoms

and attributes that correspond to quantified variables and be left with an acyclic CQ

that contains exactly the free-variables. This leaves us with a full acyclic join that has

the same answers as the original free-connex CQ.

So, it is left to design a random-access algorithm for full acyclic CQs. We do so

in the remainder of this section. Algorithm 4.2 describes the preprocessing phase that

builds the data structure and computes the count (i.e., the number of answers). Then,

Algorithm 4.3 provides random-access, and Algorithm 4.4 provides inverted-access.

Given a relation R, denote by pAttsR the attributes that appear both in R and in

its parent. If R is the root, then pAttsR = ∅. Given a relation R and an answer a, we

denote by bucket[S, a] all tuples in S that agree with a over the attributes that S and a

share. We use the notation bucket[S, a] in the same way also when a is a tuple.

The preprocessing starts by partitioning every relation to buckets according to the

different assignments to the attributes shared with the parent relation. This can be

done in linear time in the RAM model. Then, we compute a weight w(t) for each tuple

t. This weight represents the number of different answers this tuple agrees with when
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Algorithm 4.2 Preprocessing for a globally consistent full acyclic join query

1: procedure Preprocessing(D,Q)
2: for R in leaf-to-root order do
3: Partition R to buckets according to pAttsR

4: for bucket B in R do
5: for tuple t in B do
6: if R is a leaf then
7: w(t) = 1
8: else
9: let C be the children of R

10: w(t) =
∏
S∈C w(bucket[S, t])

11: let P be the tuples preceding t in B
12: startIndex(t) =

∑
s∈P w(s)

13: w(B) =
∑

t∈B w(t)

Algorithm 4.3 Random access for a globally consistent full acyclic join query

1: procedure Access(j)
2: if j ≥ w(bucket[root , ∅]) then
3: return out-of-bound
4: else
5: answer = ∅
6: SubtreeAccess(bucket[root , ∅], j)
7: return answer
8: procedure SubtreeAccess(B ⊆ R, j)
9: find t ∈ B s.t. startIndex(t) ≤ j < startIndex(t+1)

10: answer = answer ∪ {AttsR → AttsR(t)}
11: let R1, . . . , Rm be the children of R
12: j1, . . . , jm = SplitIndex(j − startIndex(t),
13: w(bucket[R1, t]), . . . ,w(bucket[Rm, t]))
14: for i in 1, . . . ,m do
15: SubtreeAccess(bucket[Ri, t], ji)

only joining the relations of the subtree rooted in the current relation. The weight is

computed in a leaf-to-root order, where tuples of a leaf relation have weight 1. The

weight of a tuple t in a non-leaf relation R is determined by the product of the weights of

the corresponding tuples in the children’s relations. These corresponding tuples are the

ones that agree with t on the attributes that R shares with its child. The weight of each

bucket is the sum of the weights of the tuples it contains. In addition, we assign each

tuple t with an index range that starts with startIndex(t) and ends with the startIndex

of the following tuple in the bucket (or the total weight of the bucket if this is the last

tuple). This represents a partition of the indices from 0 to the bucket weight, such that

the length of the range of each tuple is equal to its weight. At the end of preprocessing,

the root relation has one bucket (since pAttsroot = ∅), and the weight of this bucket

represents the number of answers to the query.

The random-access is done recursively in a root-to-leaf order: we start from the
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Algorithm 4.4 Inverted access for a globally consistent full acyclic join query

1: procedure InvertedAccess(answer)
2: return InvertedSubtreeAccess(root, answer)

3: procedure InvertedSubtreeAccess(R, answer)
4: find t ∈ R s.t. AttsR(t) = AttsR(answer)
5: if t was not found then
6: return not-an-answer
7: let R1, . . . , Rm be the children of R
8: for i in 1, . . . ,m do
9: ji = InvertedSubtreeAccess(Ri, answer)

10: if ji = not-an-answer then
11: return not-an-answer
12: offset = CombineIndex(w(bucket[R1, answer ]), j1, . . . ,
13: w(bucket[Rm, answer ]), jm)
14: return startIndex(t) + offset

single bucket at the root. At each step we find the tuple t in the current relation that

holds the required index in its range (we denote by t+1 the tuple that follows t in the

bucket). Then, we assign the rest of the search to the children of the current relation,

restricted to the bucket that corresponds to t. Finding t can be done in logarithmic time

using binary search. The remaining index j′ = j− startIndex(t) is split into search tasks

for the children using the method SplitIndex. The split can be seen as representing

j′ in a mixed radix numeral system where the units are the bucket weights. In other

words, it is done in the same way as an index is split in standard multidimensional

arrays: if the last bucket is of weight m, its index is j′ mod m, and the other buckets

recursively split between them the index b j
′

mc.
Algorithm 4.4 works similarly to Algorithm 4.3. But while the search down the

tree in Algorithm 4.3 is guided by the index and the answer is the assignment, in

Algorithm 4.4 the search is guided by the assignment and the answer is the index.

The function CombineIndex is the reverse of SplitIndex, used in line 13 of Al-

gorithm 4.3. Recursively, CombineIndex(w1, j1, . . . , wm, jm) is given by jm + wm ·
CombineIndex(w1, j1, . . . , wm−1, jm−1) with CombineIndex()=0.

Line 4 can be supported in constant time after an appropriate indexing of the buckets

at preprocessing (in our RAM model). Since Algorithm 4.4 has a constant number of

operations (in data complexity), inverted-access can be done in constant time (after the

linear preprocessing provided by Algorithm 4.2).

The next theorem, parts of which are already given in [BB13], summarizes the

algorithms presented so far.

Theorem 4.12. Given a free-connex CQ Q and a database D, it is possible to build in

linear time a data structure that allows to output the count |Q(D)| in constant time and

provides random-access in logarithmic time, and inverted-access in constant time.
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Example 4.13. Consider the CQ Q(v, w, x, y, z) ← R1(x, v, w), R2(v, y), R3(w, z) with

the join-tree with R1 as root and R2 and R3 as its children. The following is an example

of an input for Q and the computed information available at the end of preprocessing.

R1 w startIndex

a1 b1 c1 6 0
a1 b1 c2 2 6
a2 b2 c1 6 8
a2 b2 c2 2 14

R2 w startIndex

b1 d1 1 0
b1 d2 1 1

b2 d2 1 0
b2 d3 1 1

R3 w startIndex

c1 e1 1 0
c1 e2 1 1
c1 e3 1 2

c2 e4 1 0

Calling Access(13) finds (a2, b2, c1) ∈ R1. Then, the remaining 13− 8 = 5 is split

to 5 mod 3 = 2 in the top bucket of R3 and b5
3c = 1 in the bottom bucket of R2. These

in turn find (b2, d3) ∈ R2 and (c1, e3) ∈ R3. Overall, the result is (a2, b2, c1, d3, e3).

Calling InvertedAccess(a2, b2, c1, d3, e3) finds (a2, b2, c1) ∈ R1 with startIndex =

8. Then, calling InvertedSubtreeAccess on R2 returns startIndex(b2, d3) = 1

from a bucket of weight 2, and calling InvertedSubtreeAccess on R3 returns

startIndex(c1, e3) = 2 from a bucket of weight 3. The call for CombineIndex(2, 1, 3, 2)

returns 2 + 3 · 1 = 5, and the result is 8 + 5 = 13. �

4.2.2 Correctness

We prove the correctness of Algorithms 4.2, 4.3 and 4.4. Let T be a join tree of a full

CQ Q over a globally consistent database D, and let R be a relation in Q. We denote

by TR the subtree of T rooted in R, and by join(TR) the join of the relations in TR.

Claim 4.14. Let t ∈ R. The number of answers in join(TR) that agree with t is w(t).

Proof. We prove that w(t) = |{a ∈ join(TR) | a agrees with t}| by induction on the

join tree. If R is a leaf, then join(TR) = R, and every tuple agrees only with itself.

Therefore, |{a ∈ join(TR) | a agrees with t}| = 1. By definition of w on leaves, w(t) = 1.

This proves the induction base. We now prove the induction step. In this case, R is not

a leaf. Denote its children by R1, . . . , Rm. Consider two children Ri and Rj . Since T is

a join tree, it is not possible that Ri and Rj contain a variable that does not appear

in R. Therefore, for every pair of answers ai ∈ join(TRi) and aj ∈ join(TRj), if both of

them agree with t, then they also agree with each other. This means that the answers

in join(TR) that agree with t can be obtained by independently selecting answers of the
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subtrees rooted in the children of R that agree with t and combining them.

|{a ∈join(TR) | a agrees with t}|

(1)
=

m∏
i=1

|{a ∈ join(TRi) | a agrees with t}|

(2)
=

m∏
i=1

∑
{s∈Ri|s agrees with t}

|{a ∈ join(TRi) | a agrees with s}|

(3)
=

m∏
i=1

∑
{s∈Ri|s agrees with t}

w(s)

(4)
=

m∏
i=1

∑
s∈bucket[Ri,t]

w(s)
(5)
=

m∏
i=1

w(bucket[Ri, t])
(6)
= w(t)

Explanations: (1) all answers of the subtrees can be combined since T is a join tree; (2)

partitioning the answers by the tuple used in Ri; (3) induction assumption; (4) bucket

definition; (5) bucket weight definition; (6) tuple weight definition;

As a result of Claim 4.14, w(bucket[root , ∅]) = |Q(D)|.
Let T be a join-tree. Let R1, . . . , Rn be the DFS ordering of the nodes of T , where

the order of visiting the children of each node is the same as in Algorithm 4.3 and

Algorithm 4.4. We denote by parent(i) an index j such that Rj is the parent of Ri in

T . Algorithm 4.5 computes Q(D) with constant delay. Note that we assume that the

order of tuples within each bucket is consistent between the different algorithms. That

is, the for loops in Algorithm 4.5 go over the tuples in each bucket in the same order

that was used to set startIndex during preprocessing.

Algorithm 4.5 Enumeration for a globally consistent full acyclic join query

1: procedure Enumerate(D, T )
2: for t1 in bucket[R1, ()] do
3: for t2 in bucket[R2, tparent(2)] do
4: . . .
5: for tn in bucket[Rn, tparent(n)] do
6: output

⋃n
i=1 AttsRi → AttsRi(ti)

Claim 4.15. Algorithm 4.5 outputs Q(D).

Proof. The correctness follows from the correctness of the classic Yannakakis algorithm

for acyclic join queries [Yan81b]. The semi-join reductions were performed at prepro-

cessing (before applying Algorithm 4.2), and when Algorithm 4.5 is performed, we are

left with a full acyclic join over a globally consistent database instance. Therefore,

Algorithm 4.5 only needs to join the relations along the join tree.

We consider the ordering of Q(D) produced by Algorithm 4.5, and prove that

Algorithm 4.3 is correct with respect to that order.
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Claim 4.16. SubtreeAccess(B, j) returns the jth answer of Enumerate(D, TB).

Proof. We prove the claim by induction on the join tree. If B is a bucket in a leaf

relation R, then every tuple in B has weight 1, and startIndex corresponds to its line

number within the bucket. In this case, SubtreeAccess(B, j) returns the tuple in

line j of B, since for this tuple, startIndex = j. When B is a leaf, Enumerate(D, TR)

behaves as follows:

procedure Enumerate(D, TB)

for t in B do

output (AttsR → AttsR(t))

Therefore, the jth answer of Enumerate(D, TR) is the tuple in line j of B. This

concludes the induction base.

Let B be a bucket in a relation R with children R1, . . . , Rm, and let a be the

answer returned by SubtreeAccess(B, j). We prove that a is the jth answer of

Enumerate(D, TB). Since the loops in Algorithm 4.5 are ordered by a DFS, the

algorithm behaves as follows:

procedure Enumerate(D, TB)

for t in B do

for {a1 ∈ join(TR1) | a1 agrees with t} do

. . .

for {am ∈ join(TRm) | am agrees with t} do

output (AttsR → AttsR(t)) ∪
⋃m
i=1 ai

According to Claim 4.14, an iteration of the outermost loop of Enumerate(D,

TB) with tuple t ∈ B prints w(t) answers. Consider the iteration in which a is printed.

Prior to this iteration,
∑

s∈P w(s) answers were printed, where P is the set of tuples

preceding t in B. By definition, startIndex(t) =
∑

s∈P w(s). It is left to show that a is

answer number j − startIndex(t) within the outermost iteration in which it is printed.

Note that line 9 of Algorithm 4.3 chooses the same t as line 2 of Enumerate(D, TB)

since startIndex(t) ≤ j < startIndex(t+1).

Let j1, . . . , jn obtained from SplitIndex in line 13 of Algorithm 4.3. By the induc-

tion hypothesis, SubtreeAccess(bucket[Ri, t], ji) returns the jith answer of Enumer-

ate(D, Tbucket[Ri,t]). This is answer number ji of {ai ∈ join(TRi) | ai agrees with t}.
Since SplitIndex captures the behavior of indices in nested for-loops, the returned

answer is number j − startIndex(t) in the current iteration of the outermost loop.

According to Claim 4.14, w(bucket[root , ∅]) = |Q(D)|. Therefore, Access(j) recog-

nizes out-of-bound correctly. Due to Claim 4.16, when j is not out-of-bound, Access(j)

returns the jth answer of Enumerate(D, T ). Since the answers of Enumerate(D, T )

are exactly Q(D) (according to Claim 4.15), this proves that Algorithm 4.3 is a random-

access algorithm for Q(D). It is left to prove the correctness of the inverted-access.

Claim 4.17. Algorithm 4.4 is an inverted-access algorithm with respect to Algorithm 4.3.
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Proof. Let a be a mapping from the variables of the query to the domain. If an answer

agreeing with a cannot be obtained by a call to SubtreeAccess(B, j) with any B ∈ R
and natural number j, then due to the correctness of SubtreeAccess, this means that

a does not agree with any answer in join(TR). Therefore, for some relation R′ ∈ TR, no

tuple in R′ agrees with a. In this case, InvertedSubtreeAccess(R, a) will eventually

call InvertedSubtreeAccess(R′, a) which correctly returns not-an-answer.

Let B be a bucket in a relation R, and let j be a natural number. We now claim that

if SubtreeAccess(B, j) returns a, then InvertedSubtreeAccess(R, a) returns

j. We prove this claim by induction on the join-tree. If R is a leaf, then every

tuple in B has weight 1, and if we denote by t + 1 the tuple succeeding t in B, then

startIndex(t+1) = startIndex(t)+w(t+1) = startIndex(t)+1 for every t ∈ B. Denote by

t the tuple agreeing with a in B. Since a is the answer obtained by SubtreeAccess(B,

j), then due to line 9, startIndex(t) ≤ j < startIndex(t+1) = startIndex(t) + 1, and so

startIndex(t) is exactly j. When InvertedSubtreeAccess(R, a) is called, offset = 0

as R is a leaf, and so startIndex(t) = j is returned. This concludes the induction base.

Let R1, . . . , Rm be the children of R. If SubtreeAccess(B, j) returns a, then a

is the result of combining a tuple t ∈ B with the answers a1, . . . , am obtained from

applying SubtreeAccess on buckets in R1, . . . , Rm respectively. Note that line 4

of Algorithm 4.4 finds the tuple t used in Algorithm 4.3. Let j1, . . . , jm be the in-

dices obtained in line 13 of Algorithm 4.3. According to the induction hypothesis,

InvertedSubtreeAccess(Ri, ai) returns ji. Since CombineIndex is the reverse of

SplitIndex, line 13 of Algorithm 4.4 sets offset to be j − startIndex(t). Inverted-

SubtreeAccess(R, a) then returns j − startIndex(t) + startIndex(t) = j.

4.2.3 Dichotomy for CQs

Theorem 4.12 and Theorem 4.9 imply that the dichotomy of Theorem 4.10 extends to the

problems of random permutation and random access. This also means that for self-join-

free CQs, the classes of efficient two-way-access, random-access, random-permutation

and enumeration collapse. This is summarized by the next corollary.

Corollary 4.18. For every CQ Q, the following holds:

• If Q is free-connex, then Enum〈Q〉 is in TWAccess〈lin, log〉, RAccess〈lin, log〉,
REnum〈lin, log〉 and Enum〈lin, const〉.
• Otherwise, if Q is also self-join-free, then Enum〈Q〉 is not in TWAccess〈lin,polylog〉,
RAccess〈lin,polylog〉, REnum〈lin,polylog〉 or Enum〈lin,polylog〉, assuming the

sparseBMM and Hyperclique hypotheses.

Proof. Due to Theorem 4.12, every free-connex CQ Q is in the class TWAccess〈lin, log〉,
and also the number of answers to the query can be computed during the linear

time preprocessing phase. By definition, this also means Q ∈ RAccess〈lin, log〉. From

Theorem 4.9 we obtain that Q also is in REnum〈lin, log〉. Free-connex CQs are in

Enum〈lin, log〉 according to Theorem 4.10 or by using Algorithm 4.5.
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Due to Theorem 4.10, self-join-free non-free-connex CQs are not in Enum〈lin, log〉
assuming sparseBMM and Hyperclique; since REnum〈lin, log〉 ⊆ Enum〈lin, log〉,
they are also not in REnum〈lin, log〉. According to Theorem 4.9, these CQs are also not

in RAccess〈lin, log〉, and therefore they are not in TWAccess〈lin, log〉.

4.3 UCQs

In this section, we discuss the availability of random-order enumeration and random-

access in UCQs. We first show that not all UCQs that admit efficient enumeration also

admit efficient random-access. Then, we identify a subclass of UCQs that do allow for

efficient random-permutation. In addition, we relax the delay requirements and provide

an algorithm for the enumeration in random order of a union of sets, and show that the

algorithm can be applied for all unions of free-connex CQs.

If several CQs are in Enum〈lin, d〉, for some d, then their union can also be enu-

merated within the same time bounds (see Theorem 3.1). Since our goal is to answer

queries in random order, a natural question arises: does the same apply to queries

in RAccess〈lin, d〉 and REnum〈lin, d〉? We show that it does not apply to CQs in

RAccess〈lin, d〉. This means that for UCQs we cannot always rely on random-access to

achieve an efficient random-permutation algorithm as we did for CQs. The following is

an example of two free-connex CQs (therefore, each one admits efficient counting, enu-

meration, random-order enumeration and random-access), but we show that their union

is not in RAccess〈lin, lin〉 under the hypothesis that there is no O(m) time algorithm

that detects whether a graph with m edges contains a triangle.

Example 4.19. Consider the UCQ Q∪ = Q1∪Q2 with Q1(x, y, z)← R(x, y), S(y, z) and

Q2(x, y, z)← S(y, z), T (x, z). SinceQ1 andQ2 are both free-connex, we can find |Q1(D)|
and |Q2(D)| in linear time by Theorem 4.12. Note that |Q∪(D)| = |Q1(D)|+ |Q2(D)| −
|Q1(D) ∩Q2(D)|. Therefore, |Q1(D) ∩Q2(D)| > 0 iff |Q∪(D)| < |Q1(D)|+ |Q2(D)|.

Now let us assume that Enum〈Q∪〉 ∈ RAccess〈lin, lin〉. We can then ask the random-

access algorithm for Q∪ to retrieve index number |Q1(D)|+ |Q2(D)|. The algorithm

will raise an out-of-bound error exactly if |Q∪(D)| < |Q1(D)|+ |Q2(D)|. Therefore, we

can check whether Q1(D) ∩Q2(D) = ∅ in linear time. But consider the “triangle query”

Q∩(x, y, z)← R(x, y), S(y, z), T (x, z) and note that Q∩(D) = Q1(D)∩Q2(D) for all D.

We can hence determine if the query Q∩ has answers in linear time, which contradicts

the hypothesis that there is no O(m) time algorithm that detects whether a graph with

m edges contains a triangle. Thus, under Hyperclique, Enum〈Q∪〉 6∈ RAccess〈lin, lin〉.
�

Example 4.19 shows that (assuming Hyperclique) RAccess〈lin, log〉 is not closed un-

der union. It also shows that, when considering UCQs, we have that Enum〈lin, const〉 6⊆
RAccess〈lin, lin〉. In particular, this means that Enum〈lin, log〉 6= RAccess〈lin, log〉, which

is not the case when only considering CQs.
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The source of hardness in Example 4.19 is that we cannot count the intersection

efficiently. In Section 4.3.2, we show that we can obtain efficient random permutation

in cases where we do not have this problem. Then, in Section 4.3.3, we show that if we

relax the bound to logarithmic time in expectation, we can enumerate in a random-order

any union comprised of free-connex CQs. Our algorithms are phrased in general as

random-permutation algorithms for unions of sets. The sets are assumed to admit

efficient counting, uniform sampling, membership testing, and deletion. In Section 4.3.1,

we show that answers to CQs support such operations.

4.3.1 Supporting Deletion of CQ Answers

In order to use our suggested algorithms for the random-permutation of a union of

sets, the sets must support counting, membership testing, sampling and deletion. We

next show how to support these operations using the shuffle mechanism provided in

Algorithm 4.1, assuming that the sets support efficient counting, random-access and

inverted-access. We first show how to support these operations on a set of consecutive

indices.

Proposition 4.20. It is possible to support counting, testing, sampling and deletion of

a set initialized as {0, . . . , n−1} with constant time per operation.

Proof. Algorithm 4.6 describes a data structure supporting the required operations. As

in Algorithm 4.1, our data structure contains an array a of length n and an integer

i. Here, i corresponds to the number of elements deleted. The values a[0], . . . , a[i−1]

represent the deleted elements, while a[i], . . . , a[n−1] hold the elements that remain in

the set. We also use a reverse index b: whenever we set a[i] = j, we also set b[j] = i.

Conceptually, a and b start initialized with a[j] = b[j] = j and i = 0. Practically, the

arrays can be implemented as lookup tables as in Algorithm 4.1. When counting, we

return n−i. When sampling, we return a[j] for a random j ≥ i. When deleting k,

we find the index j such that a[j] = k, swap a[j] with a[i], and increase i by one. In

order to efficiently find j, we use the reverse index b. Note that all operations run with

constant time and that O(n) space is used.

The correctness of these procedures follows along the same lines of that of Algo-

rithm 4.1. Denote by aj the value a[j] if it is initialized, or j otherwise. We claim that

the values ai, · · · , an−1 are exactly those that were not deleted. This can be shown by

induction: after initialisation, a0, . . . , an−1 represent 0, . . . , n−1, and no elements were

deleted; when the ith element is deleted, the procedure stores in a[i] the deleted value,

moves the value that was there to a higher index, and increases i by one. This implies

the correctness of the other operations. Counting returns the number of non-deleted

elements, and testing checks whether the element is in ai, · · · , an−1. When sampling,

the algorithm chooses to print uniformly at random a value between ai, · · · , an−1, so

the printed answer has equal probability among all non-deleted values.

82



Algorithm 4.6 Counting, testing, sampling and deletion for 0, . . . , n−1

1: procedure Initialize(n)
2: assume a[0], ..., a[n−1] are uninitialized
3: assume b[0], ..., b[n−1] are uninitialized
4: i = 0
5: procedure Count()
6: output n− i
7: procedure Sample()
8: choose j uniformly from i, . . . , n−1
9: if a[j] is uninitialized then

10: a[j] = j; b[j] = j

11: output a[j]

12: procedure Test(k)
13: if b[k] is uninitialized then
14: b[k] = k

15: output b[k] ≥ i
16: procedure Delete(k)
17: if b[k] is uninitialized then
18: b[k] = k

19: j = b[k]
20: if a[i] is uninitialized then
21: a[i] = i

22: a[j] = a[i]
23: a[i] = k
24: b[a[i]] = i; b[a[j]] = j
25: i = i+ 1

If we have counting, random-access and inverted-access procedures for some enu-

meration problem, we can use Algorithm 4.6 on the indices of the answers in order to

support counting, testing, sampling and deletion of the answers. This is describes in

Algorithm 4.7. During initialization, we count the number of answers to our problem P ,

and initialize Algorithm 4.6 accordingly to obtain a data structure which we denote

D. When sampling, we generate a non-deleted index uniformly at random from D. We

then return the answer with that index using the random-access routine. When testing,

we call the inverted-access routine and return “True” iff we obtain a non-deleted valid

index. When deleting, we use the inverted-access routine to find the index k of the item

to be deleted and then delete it from D. This proves the following lemma.

Lemma 4.21. If an enumeration problem admits counting, random-access and inverted-

access in time t, then the set of its answers also supports sampling, testing, deletion and

counting in time O(t).

Since free-connex CQs admit efficient algorithms for counting, random-access and

inverted-access (Theorem 4.12), we can apply Lemma 4.21 to free-connex CQs and

conclude that they support sampling, testing, deletion and counting in logarithmic time
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Algorithm 4.7 counting, testing, sampling and deletion for P

1: procedure Initialize()
2: D.Initialize(P.Count())

3: procedure Count()
4: output D.Count()

5: procedure Sample()
6: output P.Access(D.Sample())

7: procedure Test(a)
8: k =P.InvertedAccess(a)
9: output k 6= not-an-answer ∧ D.Test(k)

10: procedure Delete(k)
11: k =P.InvertedAccess(a)
12: if k 6= not-an-answer then
13: D.Delete(k)

(after linear preprocessing).

4.3.2 UCQs that Allow for Random-Permutation

We describe a random-permutation algorithm for a union of sets where each set supports

operations efficiently and the size of the intersection is known. This algorithm can

be used for unions of tractable CQs with tractable intersections and guarantees a

logarithmic bound on the delay. We first show an algorithm for a union of two sets.

Lemma 4.22. Let S1 and S2 be sets, each supports sampling, testing, deletion and

counting in time t. If we can also count S1∩S2 in time t, then it is possible to enumerate

S1 ∪ S2 in uniformly random order with O(t) delay.

Algorithm 4.8 enumerates the union of two sets in uniformly random order. It

iteratively samples an element from the union uniformly at random, then deletes the

element and repeats. Lines 3 and 4 choose a random set and a random element it

contains, where the choice of set is weighted by the number of elements it contains. In

line 4, an element that appears in the two sets has twice the probability of being chosen

compared to an element that appears in only one set. The rest of the algorithm corrects

this bias by sampling twice and then randomly choosing between the two sampled

elements. If one of the sampled elements appears in both sets and the other does not,

the probabilities are set such that we are more likely to choose the latter. Note that the

size of the union can easily be computed since |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|.
We now prove that Algorithm 4.8 prints the results in a uniformly random order.

First note that for every i ∈ {1, 2} and e ∈ Si, we have that (chosen, element) = (e, i)

with probability 1
|S1|+|S2| = |S1|

|S1|+|S2|
1
|S1| = |S2|

|S1|+|S2|
1
|S2| . Thus, for every e 6∈ S1 ∩ S2, the

probability of element = e is 1
|S1|+|S2| , while for e ∈ S1 ∩ S2 this probability is 2

|S1|+|S2| .

We first show that for every element e 6∈ S1 ∩ S2, the probability of printing e in

a given iteration is 1
|S1∪S2| . There are three cases that can lead to printing e. The
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Algorithm 4.8 Random-order enumeration of S1 ∪ S2 given the intersection size

1: while |S1|+ |S2| > 0 do
2: for k ∈ {1, 2} do

3: chosenk = choose i ∈ {1, 2} with probability |Si|
|S1|+|S2|

4: elementk = Schosen .Sample()

5: if element1 ∈ S1 ∩ S2 and element2 6∈ S1 ∩ S2 then
6: p1 = |S1∪S2|−|S1∩S2|

4|S1∪S2| ; p2 = 1− p1

7: else if element1 6∈ S1 ∩ S2 and element2 ∈ S1 ∩ S2 then
8: p2 = |S1∪S2|−|S1∩S2|

4|S1∪S2| ; p1 = 1− p2

9: else
10: p1 = 1; p2 = 0

11: element = choose element i with probability pi
12: S1.delete(element); S2.delete(element); output element

first case is that e = element1 and element2 6∈ S1 ∩ S2, and then e is printed with

probability 1. The probability of this case is 1
|S1|+|S2| for selecting e as the first element

multiplied by (|S1 ∪ S2| − |S1 ∩ S2|) 1
|S1|+|S2| for selecting the second element not from

the intersection. The second case is that e = element1 again, but element2 ∈ S1 ∩ S2.

In this case, e is printed with probability 3|S1∪S2|+|S1∩S2|
4|S1∪S2| . The probability of the second

case is 1
|S1|+|S2| for selecting e as the first element multiplied by |S1 ∩ S2| 2

|S1|+|S2| for

selecting the second element from the intersection. The second case is that e = element2,

and element1 ∈ S1 ∩S2. This case has the same probability as the second case. Overall,

the probability of choosing e is:
1

|S1|+ |S2|
(|S1 ∪ S2| − |S1 ∩ S2|)

1

|S1|+ |S2|

+ 2
1

|S1|+ |S2|
|S1 ∩ S2|

2

|S1|+ |S2|
3|S1 ∪ S2|+ |S1 ∩ S2|

4|S1 ∪ S2|

=
1

(|S1|+ |S2|)2
(|S1 ∪ S2| − |S1 ∩ S2|+ |S1 ∩ S2|

3|S1 ∪ S2|+ |S1 ∩ S2|
|S1 ∪ S2|

)

=
1

(|S1|+ |S2|)2

(|S1 ∪ S2|+ |S1 ∩ S2|)2

|S1 ∪ S2|
=

1

|S1 ∪ S2|

In total, the probability of printing an element that is not in the intersection

is |S1∪S2|−|S1∩S2|
|S1|∪|S2| . This means that the probability of printing an element from the

intersection is 1 − |S1∪S2|−|S1∩S2|
|S1|∪|S2| = |S1∩S2|

|S1∪S2| . Since all elements in the intersection are

treated equally in Algorithm 4.8, we have that, given e ∈ S1 ∩ S2, the probability of

choosing e is |S1∩S2|
|S1∪S2|

1
|S1∩S2| = 1

|S1∪S2| .

Overall, we showed that, in every iteration, all elements have probability 1
|S1∪S2| of

being printed. A printed element is deleted from all sets containing it, so it will not

be printed twice. Thus, Algorithm 4.8 generates the elements in uniformly random

order. Regarding time complexity, as every iteration prints after a constant number

of operations, each taking O(t) time, the delay is bounded by O(t). This proves

Lemma 4.22.
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Next, we generalize Lemma 4.22 to a union of an arbitrary number of sets S1, . . . , Sk.

Lemma 4.23. Let S1, . . . , Sk be sets, each supports sampling, testing, deletion and

counting in time t. If for every I ⊆ [1,m] we can also count
⋂
i∈I Si in time |I|t, then

it is possible to enumerate
⋃
i∈[k] Si in uniformly random order with O(2kt) delay.

We prove that we can sample a union of k of these sets uniformly in time O(2kt)

by induction on k. Then, we can repeatedly sample and delete the sampled element

to obtain a random permutation. When k = 1, we can sample S1 in time O(t). When

k > 1, we use one iteration of Algorithm 4.8 for the induction step. We apply this

algorithm with the union of the first bk2c sets as one set and the union of the other sets

as the second. We proved that this samples the union uniformly at random correctly.

We now discuss the time complexity. The two sampling operations take O(2kt) time

together by the induction assumption. Testing membership in the intersection requires

testing all sets, which takes O(kt) time. Computing the sizes of the sets and their

intersections can be done via the inclusion-exclusion principle in time O(2kt). Overall,

an iteration of Algorithm 4.8 contains a constant number of operations, each taking

O(2kt) time. This proves Lemma 4.23.

Since free-connex CQs admit sampling, testing, deletion and counting in logarithmic

time, we can apply Lemma 4.23 to UCQs and prove the following theorem.

Theorem 4.24. If Q is a union of free-connex CQs where the intersection of every

subset of the CQs is also free-connex, then Enum〈Q〉 ∈ REnum〈lin, log〉.

Theorem 4.12 and Lemma 4.21 show that the individual free-connex CQs support

sampling, testing, deletion and counting in logarithmic time. The sizes of the free-connex

intersections can be efficiently computed and stored during preprocessing and updated

upon deletion. Thus, we can use Lemma 4.23 to prove Theorem 4.24.

Remark. In this section, we proved that a union of tractable CQs with tractable

intersections admits efficient random permutation. If we add the requirement that the

individual CQs support random access in compatible orders, we obtain the class of

mc-UCQs that also admits efficient random access. This discussion is beyond the scope

of this thesis, and additional details can be found in the conference paper [CZB+20].

4.3.3 Random-Permutation with Expected Logarithmic Delay

Theorem 4.24 does not apply to all unions of free-connex CQs. In this section, we show

that if we relax the bound to logarithmic time in expectation, we can enumerate in a

random-order the answers to any such UCQ. Here again we use the abstraction of a

union of sets that support sampling, testing, deletion and counting. If the number of sets

in the union is constant, the algorithm carries the guarantees of expected and amortized

constant number of such operations between every pair of successively printed answers.

The algorithm is an adaptation of the sampling algorithm by Karp and Luby [KLM89]
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Algorithm 4.9 Random-order enumeration of S1 ∪ · · · ∪ Sk
1: while

∑k
j=1 |Sj | > 0 do

2: chosen = choose i with probability |Si|∑k
j=1 |Sj |

3: element = Schosen .Sample()
4: providers = {Sj | Sj .Test(element) = true}
5: owner = min{j | Sj ∈ providers}
6: for Sj ∈ providers \ {Sowner} do
7: Sj .delete(element)

8: if Sowner = Schosen then
9: Schosen .delete(element) ; output element

extended by tuple deletions that allow for sampling without repetitions. We prove the

following lemma.

Lemma 4.25. Let S1, . . . , Sk be sets, each supports sampling, testing, deletion and

counting in time t. Then, it is possible to enumerate
⋃k
j=1 Sj in uniformly random order

with expected O(kt) delay.

Similarly to Algorithm 4.8, Algorithm 4.9 chooses a random set and a random

element it contains. Here again, if the algorithm printed the element at that stage (after

line 3), then an element that appears in two sets would have twice the probability of

being chosen compared to an element that appears in only one set. The following lines

correct this bias differently than Algorithm 4.8. We denote by providers all sets that

contain the chosen element. Then, the algorithm assigns one owner to this element out

of its providers (as the choice of the owner is not important, we arbitrarily choose to take

the provider with the minimum index). The element is then deleted from non-owners,

and is printed only if the algorithm chooses its owner in line 2. If the element was

reached through a non-owner, then the current iteration “rejects” by printing nothing.

Algorithm 4.9 prints the results in a uniformly random order since, in every iteration,

every answer remaining in the union has equal probability of being printed. Denote by

Choices the set of all possible (chosen, element) pairs that the algorithm may choose

in lines 2 and 3. The probability of such a pair is |Schosen |∑k
j=1 |Sj |

1
|Schosen | = 1∑k

j=1 |Sj |
, which is

the same for all pairs in Choices. Denote by AccChoices ⊆ Choices the pairs for which

Schosen is the owner of element . Line 8 guarantees that an element is printed only when

the selections the algorithm makes are in AccChoices. Since every possible answer only

appears once as an element in AccChoices , the probability of each element to be printed

is 1∑k
j=1 |Sj |

. Therefore, all answers have the same probability of being printed. Note,

however, that the sum of these probabilities does not necessarily add up to one, and

with probability
|
⋃k
j=1 Sj |∑k
j=1 |Sj |

the iteration does not print any answer. A printed answer is

deleted from all sets containing it, so it will not be printed twice.

We now discuss the time complexity. If some iteration rejects an answer, this

iteration also deletes it from all non-owner sets. This guarantees that each unique
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answer will only be rejected once, as it only has one provider in the second time it is seen.

This means that the total number of iterations Algorithm 4.9 performs is bounded by

twice the number of answers. The number of operations between successive answers is

therefore amortized constant. In addition, since by definition |Choices| ≤ k|AccChoices|,
in every iteration the probability that an answer will be printed is |AccChoices|

|Choices| ≥
1
k .

The delay between two successive answers therefore comprises of a constant number of

operations both in expectation and in amortized complexity. This proves Lemma 4.25.

By combining Theorem 4.12 with Lemma 4.25 and Lemma 4.21, we can answer

unions of free-connex CQs with random order. We get the following result.

Theorem 4.26. Let Q be a union of free-connex CQs. There is a random-permutation

algorithm for answering Q that uses linear preprocessing and expected logarithmic delay.

4.4 Note on Space Usage

Our random permutation solution for CQs consists of two components: shuffle and

random access. The random access solution we propose uses only a constant amount of

registers in the access phase. However, the shuffle solution we propose has higher space

requirements. If there are n answers, Algorithm 4.1 uses O(n) registers. Recall that n

may be larger than the input. Next, we inspect whether there exist solutions that use

less space.

Proposition 4.27. Any random-permutation algorithm for a problem with n answers

must use at least n bits.

Proof. For any subset of the answers, a correct random-permutation algorithm may

reach a state where exactly these answers were printed. The algorithm must distinguish

the 2n possible states corresponding to the printed answers in order to guarantee printing

every answer exactly once. Distinguishing 2n states requires at least n bits.

The O(n) registers required by our solution correspond to O(n log n) bits in the

model we use where every register is assumed to have Θ(log n) bits. Proposition 4.27

means that, despite using a substantial amount of space, the space complexity of our

solution is only a log factor away from optimal. We note that to store a permutation

of n elements, we need log(n!) = Θ(n log n) bits. Therefore, any solution that uses

only O(n) bits must avoid keeping the information of the order in which the answers

were printed, and instead store only which answers were printed. We next propose an

alternative to Algorithm 4.1 that requires no more than the optimal amount of space.

We propose using a bitset: n
logn registers where each bit is on iff the answer of this

index was printed. In order to search these registers efficiently, we store them as leaves

in a complete binary search tree where each inner node stores the amount of off bits in

the leaves of its subtree. Given such a tree, testing and deletion can be done by directly

accessing the desired bit, counting corresponds to the number of off bits stored in the
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root, and sampling can be done as follows. Draw a random index i bounded by the

count, and follow a path from the root to the relevant leaf: go right iff i is larger than

the amount of off bits in the left child. If you go right, subtract this number of off bits

from i. When reaching the leaf, return the index of the ith off bit. The number of

nodes in such a tree is O( n
logn), and searching for the ith off bit can be done in time

proportional to the depth of the tree, O(log n) time. If we construct this tree lazily and

initialize nodes only as they are used, the initialization can take constant time. We

conclude the following result.

Lemma 4.28. The set 0, . . . , n−1 supports sampling, testing, deletion and counting in

O(log n) delay and O(n) bits.

The solution presented here is arguably less elegant than the O(1) delay solution

based on the Fisher-Yates shuffle. Nevertheless, in our problem, the delay is logarith-

mic in both cases due to the random-access, and the bit-set solution enjoys reduced

space requirements. Repeatedly performing sampling and deletion results in random

permutation. By replacing Algorithm 4.1 with the solution we propose here, we obtain

a random permutation algorithm for free-connex CQs with the same time guarantees

(linear preprocessing and logarithmic delay) and optimal space consumption. By apply-

ing this same solution in Lemma 4.21, we also obtain our results for UCQs with optimal

space consumption.

Theorem 4.29. Algorithms 4.9 and 4.8 can be realized with optimal space consumption.
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Chapter 5

Exploiting Functional

Dependencies for Query

Answering

In the previous chapters, we discussed the enumeration complexity of UCQs when we

have no information on the input data other than the relations and their arities. In

this chapter, we inspect how the characterizations of the previous chapters change in

the common case that the possible values in the relations are restricted. We show that

queries that are intractable over general schemas may become tractable in the presence

of dependencies, and we strive for lower bounds that show that our definitions cover all

tractable cases. Throughout most of this chapter, the queries we discuss are CQs and

the constraints are functional dependencies. At the end of this chapter, we discuss how

to extend these results to cardinality dependencies, CQs with disequalities, and UCQs.

This chapter contains joint work with Markus Kröll. The findings of this chapter

were published in the International Conference on Database Theory [CK18], and invited

for a special issue of Theory of Computing Systems (TOCS) Journal on selected papers

from ICDT 2018 [CK19a].

Organization. In Section 5.1, we define an extension of a CQ based on the FDs, and

show that if the extension is free-connex, the original CQ can be efficiently solved. In

Section 5.2, we show results of the opposite direction: if the extension is not free-connex,

than the original CQ is intractable. This is shown for acyclic CQs in general, and for

cyclic CQs only when the FDs are unary. Section 5.3 extends the results beyond CQs

and functional dependencies.

5.1 FD-Extensions

We define an extension of a CQ based on FDs in Section 5.1.1. In Section 5.1.2, We

discuss the equivalence between Q and Q+ with respect to enumeration. As a result,
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we obtain in Section 5.1.3 that if Q+ is in a class of queries that allows for tractable

enumeration, then Q is tractable as well.

5.1.1 Definition and Structure

In this section, we formally define the FD-extension Q+ of a CQ Q. Then, we discuss the

possible structural differences between Q and Q+. Intuitively, the extension is based on

treating the FDs as dependencies between variables. Assume that a variable x implies a

variable y via an FD. Given an assignment for x in some answer to the query, we know

the unique assignment of y according to R. Therefore, we can add the y value to every

tuple that has an x value. Note however that when we extend the relations with these

known values, the data still conforms to the FDs. Thus, the process of extension does

not remove the FDs. Instead, it ensures that the extended query holds in its structure

the added value that the FDs provide.

The extension of an atom R(~v) according to an FD S : A→ b and an atom S(~u) is

possible if ~u[A] ⊆ ~v but ~u[b] /∈ ~v. In this case, ~u[b] is added to the variables of R. The

FD-extension of a query is defined by iteratively extending all atoms as well as the head

according to every possible dependency in the schema, until a fixpoint is reached. The

schema extends accordingly: the arities of the relations increase as their corresponding

atoms extend, and the FDs apply in every relation that contains all relevant variables.

Dummy variables are added to adjust to the change in arity in case of self-joins.

Definition 5.1 (FD-Extension). Let Q(~p) ← R1(~v1), . . . , Rm( ~vm) be a CQ over a

schema S = (R,∆). We define two types of extension steps:

• The extension of an atom Ri(~vi) according to an FD Rj : A→ b.

Prerequisites: ~vj [A] ⊆ ~vi and ~vj [b] /∈ ~vi.
Effect: The arity of Ri increases by one, Ri(~vi) is replaced by Ri(~vi, ~vj [b]). In

addition, every Rk( ~vk) such that Rk=Ri and k 6= i is replaced with Rk( ~vk, tk),

where tk is a fresh variable in every such step.

• The extension of the head Q(~p) according to an FD Rj : A→ b.

Prerequisites: ~vj [A] ⊆ ~p and ~vj [b] /∈ ~p.
Effect: The head is replaced by Q(~p, ~vj [b]).

The FD-extension of Q is the query Q+(~q) ← R+
1 ( ~um), . . . , R+

m( ~um), obtained by

performing all possible extension steps on Q according to FDs of ∆ until a fixpoint is

reached. The extension is defined over the schema S+ = (R+,∆Q+), where R+ is R
with the extended arities, and ∆Q+ is:

{R+
i : C → d | ∃R+

i (~ui) ∈ atoms(Q+), ∃Rj(~vj) ∈ atoms(Q), ∃(Rj : A→ b) ∈ ∆,

s.t. ~ui[C] = ~vj [A] and ~ui[d] = ~vj [b]}.

Given a query, its FD-extension is unique up to a permutation of the added variables

and renaming of the new variables. As the order of the variables and the naming make

no difference w.r.t. enumeration, we can treat the FD-extension as unique.
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Since our method treats the FDs as between variables, for simplicity, we sometimes

denote the FDs accordingly. If an FD δ has the form R : A→ b for A = {a1, . . . , a|A|}
and the query has an atom R(~v), we sometimes denote δ by R : {~v[a1], . . . , ~v[a|A|]} → ~v[b].

To help distinguish these two representations, we usually denote integers by lower case

letters from the beginning of the alphabet, while variables take letters from the end of

the alphabet. Sets are usually denoted by capital letters.

Example 5.2. Consider a schema with ∆ = {R1 : 1→ 2, R3 : 2, 3→ 1}, and the query

Q(x)← R1(x, y), R2(x, z), R2(u, z), R3(w, y, z). As the FDs are x→ y and yz → w, the

FD-extension is Q+(x, y) ← R+
1 (x, y), R+

2 (x, z, y, w), R+
2 (u, z, t1, t2), R+

3 (w, y, z). We

first apply x→ y on the head, and then x→ y and consequently yz → w on R2(x, z).

These two FDs are now in the schema also for R2, and the FDs of the extension are

∆Q+ = {R+
1 : 1→ 2, R+

2 : 1→ 3, R+
2 : 3, 2→ 4, R+

3 : 2, 3→ 1}. �

We later show that the enumeration complexity of a CQ Q over a schema with FDs

only depends on the structure of Q+, which is implicitly given by Q and its schema.

Therefore, we introduce the notions of acyclic and free-connex queries for FD-extensions:

Definition 5.3. Let Q be a CQ over a schema (R,∆), and let Q+ be its FD-extension.

• We say that Q is FD-acyclic if Q+ is acyclic.

• We say that Q is FD-free-connex if Q+ is free-connex.

• We say that Q is FD-cyclic if Q+ is cyclic.

The following proposition shows that the classes of acyclic queries and free-connex

queries are both closed under constructing FD-extensions.

Proposition 5.4. Let Q be a CQ over a schema (R,∆).

• If the query Q is acyclic, then it is FD-acyclic.

• If the query Q is free-connex, then it is FD-free-connex.

Proof. We prove that if Q is acyclic, then Q+ is also acyclic, by constructing a join-

tree of H(Q+) given one of H(Q). The same proof can be applied to a join tree

containing the head to show that if Q is free-connex, then so is Q+. Denote by

Q = Q0, Q1, . . . , Qn = Q+ a sequence of queries such that Qi+1 is the result of extending

all possible relations of Qi according to a single FD δ ∈ ∆. By induction, it suffices to

show that ifH(Qi) has a join tree, thenH(Qi+1) has one too. So consider an acyclic query

Qi(~p) ← R1(~v1), . . . , Rm(~vm) extended to the query Qi+1(~q) ← R1(~u1), . . . , Rm(~um)

according to the FD δ = Rj : ~x → y, and let Ti = (Vi, Ei) be a join tree of H(Qi).

We claim that the same tree (but with the extended atoms), is a join tree for Qi+1.

Formally, define Ti+1 = (Vi+1, Ei+1) such that Vi+1 = {Rk(~uk) | 1 ≤ k ≤ m} and

Ei+1 = {(Rk(~uk), Rl(~ul)) | (Rk(~vk), Rl(~vl)) ∈ Ei}. Next we show that the running

intersection property holds in Ti+1, and therefore it is a join tree of H(Qi+1).

Every new variable introduced in the extension appears only in one atom, so the

subtree of Ti+1 containing such a variable contains one node and is trivially connected.
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For any other variable w 6= y, the attribute w appears in the same atoms in Q and

Q+. Therefore, the subgraph of Ti+1 containing w is isomorphic to the subgraph of

Ti containing w, and since Ti is a join tree, it is connected. It is left to show that the

subtree of Ti+1 containing y is connected. Since Rj is an atom in Q containing δ, it

corresponds to vertices in Ti and Ti+1 containing ~x ∪ {y}. Let Rk be some vertex in

Ti+1 containing y. We will show that all vertices S1, . . . , Sr on the path between Rk

and Rj contain y. If y appears in the vertex Rk in Ti, then it also appears in S1, . . . , Sr

since Ti is a join tree. Since the extension does not remove occurrences of variables, y

appears in these vertices in Ti+1 as well. Otherwise, y was added to Rk via δ, so Rk

contains ~x. Since Ti is a join tree, the vertices S1, . . . , Sr all contain the variables ~x.

Thus by the definition of Qi+1, y is added to each of S1, . . . , Sr (if it was not already

there) in Ti+1. Thus also the subtree of Ti+1 containing y is connected. Therefore Ti+1

is indeed a join tree.

Example 1.3 shows that the converse of the proposition above does not hold.

This means that, by Theorem 2.1, there are queries Q such that evaluating Q+ is

in Enum〈lin, const〉, but evaluating Q cannot be done with the same complexity if we do

not assume the FDs. The next section shows that, when relying on the FDs, evaluating

Q+ is equally hard to evaluating Q.

5.1.2 Enumeration Complexity

In this section, we show the equivalence between Q and Q+ with respect to complexity

classes that are closed under exact reductions. We prove the following theorem.

Theorem 5.5. Let Q be a CQ over a schema (R,∆), and let Q+ be its FD-extension.

Then, Enum∆〈Q〉 ≡e Enum∆Q+ 〈Q+〉.

Proof. Consider a query Q(~p) ← R1(~v1), . . . , Rm(~vm) and its FD-extension Q+(~q) ←
R+

1 (~u1), . . . , R+
m(~um). We show the two parts of the equivalence.

Claim 5.6. Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉.

Construction. Given an instance I for Enum∆〈Q〉, we construct an instance σ(I)

for Enum∆Q+ 〈Q+〉 with two phases: cleaning and extension. In the cleaning phase, we

remove tuples that interfere with the extended dependencies. For every dependency

δ = Rj : X → y and every atom Rk(~vk) that contains the corresponding variables (i.e.,

X ∪ {y} ⊆ ~vk), we correct Rk according to δ: we only keep tuples of RIk that agree with

some tuple of RIj over the values of X ∪{y}. We denote the cleaned instance by I0. The

cleaning phase can be done in linear time by first sorting both RIj and RIk according

to X ∪ {y}, and then performing one scan over both of them. Next, we perform the

extension phase. We follow the extension of the schema as described in Definition 5.1

and extend the instance accordingly. This phase results in a sequence of instances
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I0, I1, . . . , In = σ(I) that correspond to a sequence of queries Q = Q0, Q1, . . . , Qn = Q+

such that each query is the result of extending an atom or the head of the previous

query according to an FD. If in step i the head was extended, we set Ii+1 = Ii. Now

assume some relation Rk is extended according to some FD Rj : X → y. For each tuple

t ∈ RIik , if there is no tuple s ∈ RIij that agrees with t over the values of X, then we

remove t altogether. Otherwise, we copy t to R
Ii+1

k and assign y with the same value

that s assigns it. The extension phase takes linear time for each step. Since the number

of FDs is constant in data complexity, the overall construction takes linear time. Note

that this construction ensures that the extended dependencies hold in σ(I). Given an

answer µ|free(Q+) ∈ Q+(σ(I)), we set τ(µ) = µ|free(Q). This projection only requires

constant time.

Correctness. We now show that Q(I) = {µ|free(Q) : µ|free(Q+) ∈ Q+(I+)}. First, if

µ|free(Q+) is an answer of Q+(I+), then µ is a homomorphism from Q+ to I+. Since all

tuples of I+ appear (perhaps projected) in I, then µ is also a homomorphism from Q

to I, and µ|free(Q) ∈ Q(I). It is left to show the opposite direction: if µ|free(Q) ∈ Q(I)

then µ|free(Q+) ∈ Q+(I+). We show by induction on Q = Q0, Q1, . . . , Qn = Q+ that

µ|free(Qi) ∈ Qi(Ii). The induction base holds since in the cleaning phase we did not

remove “useful” tuples. Since µ|free(Q) ∈ Q(I), there exist tuples, one of each relation of

the query, that agree on the values of X ∪ {y} (they all assign them with the values

µ assigns them). These tuples were not removed in the cleaning phase, and therefore

µ|free(Q) ∈ Q(I0). Next assume that µ|free(Qi) ∈ Qi(Ii), and we want to show that

µ|free(Qi+1) ∈ Qi+1(Ii+1). This claim is trivial in case the head was extended. Note also

that there cannot be two distinct answers µ|free(Qi+1) and µ′|free(Qi+1) in Qi+1(Ii+1) such

that µ|free(Qi) = µ′|free(Qi), as the added variable is bound by the FD to have only one

possible value. Now consider the case where an atom Rk(~vk) was extended according

to an FD Rj : X → y since X ⊆ ~vk. The tuple µ(~vk) ∈ RIik was extended with the

value µ(y) due to the tuple µ(~vj) ∈ RIij that agrees with it on the values of X, and so

µ(~vk, y) ∈ RIi+1

k . In case of self-joins, other atoms with the relation Rk are extended

with a new and distinct variable. Such variables will be mapped to this value µ(y) as

well. Overall, we have that µ (extended by mappings of the fresh variables) is also a

homomorphism in Qi+1(Ii+1).

Claim 5.7. Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉.

Construction. Given an instance I+ for Enum∆Q+ 〈Q+〉, we construct an instance

σ(I+) for Enum∆〈Q〉 with three phases: cleaning, building a lookup table and projection.

In the cleaning phase, we remove tuples that do not contribute to the answer set of

Q+ in order to prevent additional answers from appearing in Q after the projection.

This can be seen as unifying the restrictions of different FDs in ∆Q+ that originate in

the same FD in ∆. For every FD Rj : X → y in ∆ and every atom R+
k (~uk) such that

X ∪ {y} ⊆ ~uk, we remove all tuples t ∈ R+I+

k that agree with some tuple s ∈ R+I+

j over

95



X but disagree with s over y. The cleaning phase can be done in linear time by first

sorting both R+I+

k and R+I+

j according to X. Next, we construct a lookup table T to

later reconstruct the assignments to free(Q+) \ free(Q). For every y ∈ free(Q+) \ free(Q)

added to the head due to an FD Rj : X → y, denote by ~x a vector containing the

variables of X in lexicographic order. For every tuple in R+I+

j that assigns y and ~x with

the values y0 and ~x0 respectively, we set T (~x, ~x0, y) = y0. Note that due to the FD, a

key cannot map to two different values. We conclude the construction by projecting the

relations of I+ according to the schema of Q. These steps result in the construction of

an instance σ(I+) and a lookup table T in linear time. Note that ∆ hold in σ(I+) since

∆Q+ contains them.

Given µ|free(Q) ∈ Q(I), we define τ(µ|free(Q)) = µ|free(Q) ∪ νµ, where the mapping

νµ : free(Q+) \ free(Q)→ dom uses the lookup table: For every y ∈ free(Q+) \ free(Q)

added due to some FD Rj : X → y, we set νµ(y) = T [(~x, µ(~x), y)]. Note that τ is

computable in constant time since we use the lookup table | free(Q+) \ free(Q)| times,

and each access takes constant time.

Correctness. We first claim that the lookup table succeeds in reconstructing the values

for the missing head variables: if µ|free(Q) ∈ Q(σ(I+)), then τ(µ|free(Q)) = µ|free(Q+).

By definition, for every y ∈ free(Q), τ(µ(y)) = µ(y). We need to show the same for

y ∈ free(Q+)\free(Q). In this case, y was added to the head due to some FD Rj : X → y,

and τ(µ(y)) is defined to be νµ(y) = T [(~x, µ(~x), y)]. Since µ is a homomorphism into

σ(I+), there exists some tuple in R
σ(I+)
j that assigns ~x and y with µ(~x) and respectively

µ(y). This tuple is a projection of a tuple inRI
+

j that assigns ~x and y with the same values.

Due to this tuple, when constructing the lookup table, we set T [(~x, µ(~x), y)] = µ(y).

We now show that Q+(I+) = {µ|free(Q+) : µ|free(Q) ∈ Q(σ(I+))}. We start by show-

ing that if µ|free(Q+) ∈ Q+(I+), then µ|free(Q) ∈ Q(σ(I+)). Let µ be a homomorphism

from the variables of Q+ to I+. Then, for every atom R+
i (~ui) of Q+, we have that R+I+

i

contains the tuple µ(~ui), and these tuples all agree on all variables of Q+. In particular,

for every FD X → y in ∆Q+ , these tuples agree on the y value. Therefore, none of these

tuples are removed in the cleaning phase when constructing σ(I+). After projecting the

cleaned relations of I+ into those of σ(I+), the projections of these tuples appear in

σ(I+). Thus, for every Ri(~vi) in Q, we have that R
σ(I+)
i contains the tuple µ(~vi), and

so µ is a homomorphism from Q to σ(I+). In other words, µ|free(Q) ∈ Q(σ(I+)).

For the second direction we need to show that if µ|free(Q) ∈ Q(σ(I+)), then

µ|free(Q+) ∈ Q+(I+). Let µ be a homomorphism from Q to σ(I+). Thus, for ev-

ery Ri(~vi) in Q, we have that R
σ(I+)
i contains the tuple µ(~vi). By construction of σ(I+),

these tuples are projections of tuples in the cleaned I+. Consider an atom R+
i (~ui) of

Q+. Since R
σ(I+)
i contains µ(~vi), we have that the cleaned R+I+

i contains a tuple si

whose projection into ~vi is µ(~vi). We claim that si = µ(~ui). That is, si agrees with

µ also on the new attributes. Indeed, if Ri was extended due to an FD Rj : X → y,

then we know that µ(~vj) ∈ Rσ(I+)
j , and that µ(~vj) and si must agree on y (in addition
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to agreeing on X), otherwise this si would have been deleted in the cleaning phase.

Therefore, si assigns y with µ(y). Then, for every atom R+
i (~ui) of Q+, we have that

R+I+

i contains the tuple µ(~ui), and we conclude that µ|free(Q+) ∈ Q+(I+).

5.1.3 Tractability

As described in Corollary 5.8, a direct consequence of Theorem 5.5 is that FD-extensions

can be used to expand tractable enumeration classes. This is due to the fact that

Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉. The opposite direction is used in Section 5.2 to show

the lower bounds required for a dichotomy.

Corollary 5.8. Let C be an enumeration class that is closed under exact reduction. Let

Q be a CQ and let Q+ be its FD-extension. If Enum∆Q+ 〈Q+〉 ∈ C, then Enum∆〈Q〉 ∈ C.

Enum〈lin, const〉, REnum〈lin, log〉, RAccess〈lin, log〉 and TWAccess〈lin, log〉 are all

closed under exact reduction. Since free-connex queries are in these classes (Corol-

lary 4.18), we get the following corollary.

Corollary 5.9. Let Q be a CQ over a schema (R,∆). If Q is FD-free-connex,

then Enum∆〈Q〉 is in each of Enum〈lin, const〉, REnum〈lin, log〉, RAccess〈lin, log〉 and

TWAccess〈lin, log〉.

Proof. Since Q+ is free-connex, and due to Corollary 4.18, we have Enum∅〈Q+〉 is

in Enum〈lin, const〉, REnum〈lin, log〉, RAccess〈lin, log〉 and TWAccess〈lin, log〉. Any in-

stance over the schema (R,∆Q+) is also valid over (R, ∅), so using the identity mapping

shows that Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉. Thus, Enum∆Q+ 〈Q〉 in is these four classes,

and from Corollary 5.8 we get that Enum∆〈Q〉 is in these classes as well.

We can now revisit Example 1.3. The query Q(x, y) ← R1(z, x), R2(z, y) is not

free-connex. Therefore, if we ignore the FDs, enumerating Q is not in Enum〈lin, const〉
according to Theorem 2.1. However, given the dependency R2 : z → y, the FD-

extension is Q+(x, y)← R+
1 (z, y, x), R+

2 (z, y). As it is free-connex, evaluating Q is in

Enum〈lin, const〉 by Corollary 5.9.

5.2 Hardness Results

We now prove lower bounds for CQs in the presence of FDs. Section 5.2.1 shows the

hardness of FD-acyclic CQs that are not FD-free-connex, and Section 5.2.2 handles

FD-cyclic CQs.

5.2.1 FD-Acyclic CQs

In this section, we characterize which self-join-free FD-acyclic CQs are in the class

Enum〈lin, const〉. We use the notion of FD-extensions defined in the previous section to
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establish a dichotomy stating that enumerating the answers to an acyclic query is in

Enum〈lin, const〉 iff the query is FD-free-connex. The positive case for the dichotomy is

described in Corollary 5.9, and this section concludes the negative case. We prove the

following theorem.

Theorem 5.10. Let Q be a self-join-free FD-acyclic CQ over the schema (R,∆). If Q

is not FD-free-connex, then Enum∆〈Q〉 6∈ Enum〈lin,polylog〉, assuming sparseBMM.

Recall that the proof of Theorem 2.1 describes an exact reduction Enum∅〈Π〉 ≤e
Enum∅〈Q〉 from the matrix multiplication query Π(x, y)← A(x, z), B(z, y) to any self-

join-free acyclic non-free-connex CQ Q. It relies on a free-path (x, z1, . . . , zk, y) in Q to

encode any instance of the matrix multiplication problem in Q: the variables x,y and

z1, . . . , zk of the free-path encode the variables x, y and z of Π, respectively. This way,

A is encoded by an atom containing x and z1, and B is encoded by an atom containing

zk and y. Atoms containing some zi and zi+1 propagate the value of z. FDs restrict

the relations that can be assigned to atoms. This means that the reduction cannot be

freely performed on databases with FDs, and the hardness proof no longer holds. The

following example illustrates where the reduction fails in the presence of FDs.

Example 5.11. The CQ from Example 1.3 has the form Q(x, y) ← R1(z, x), R2(z, y)

with the single FD ∆ = {R2 : z → y}. In the previous section, we show that it is in

Enum〈lin, const〉, so the reduction should fail. Indeed, it would assign R2 with the same

relation as B of the matrix multiplication problem, but this may have two tuples with

the same z value and different y values. Therefore, the construction does not yield a

valid instance of Enum∆〈Q〉. �

We now provide a modification of this construction to show an exact reduction from

Enum∅〈Π〉 to Enum∆Q+ 〈Q+〉. Any violations of the FDs are fixed by carefully picking

more variables other than those of the free-path to take the roles of x,y and z of the

matrix multiplication problem. This is done by introducing the sets Vx,Vy and Vz which

are subsets of var(Q). We say that a variable β plays the role of α, if β ∈ Vα. To clarify

the reduction, we start by describing a restricted case, where all FDs are unary. The

basic idea in the case of general FDs remains the same, but it requires a more involved

construction of the sets Vα.

Unary FDs

For the unary case, we define the sets Vx, Vy and Vz to hold the variables that iteratively

imply x, y and some zi, respectively. That is, for α ∈ {x, y, z1, . . . , zk} we set Vα := {α}
and apply Vα := Vα ∪ {γ ∈ var(Q) | γ → β ∈ ∆Q+ ∧ β ∈ Vα} until a fixpoint is reached.

We then define Vz := Vz1 ∪ · · · ∪ Vzk .
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The Reduction. Let I = (AI , BI) be an instance of Enum∅〈Π〉. We define σ(I)

by describing the relation RI for every atom R(~v) ∈ atoms(Q+). If var(R) ∩ Vy = ∅,
then every tuple (a, c) ∈ AI is copied to a tuple in RI . Variables in Vx get the value a,

variables in Vz get the value c, and variables that play no role are assigned a constant

⊥. That is, we define Rσ(I) to be {(f(v1, a, c), . . . , f(vk, a, c)) | (a, c) ∈ AI}, where:

f(vi, a, c) =


a if vi ∈ Vx \ Vz,
c if vi ∈ Vz \ Vx,
(a, c) if vi ∈ Vx ∩ Vz,
⊥ otherwise.

If var(R) ∩ Vy 6= ∅, we show that var(R) ∩ Vx = ∅ (see “well-defined reduction” below).

In this case we define the relation similarly with BI . Given a tuple (c, b) ∈ BI , the

variables of Vy get the value b, and those of Vz are assigned with c.

Example 5.12. Consider the query Q+(x, y, v)← R(u, x, z), S(v, y, z) with FDs ∆Q+ =

{R : u → x,R : u → z, S : y → v}. Using the free-path (x, z, y), the reduction sets

Vx = {x, u}, Vy = {y} and Vz = {z, u}. Given a matrix multiplication instance I with

relations AI and BI , every tuple (a, c) ∈ AI results in a tuple ((a, c), a, c) ∈ Rσ(I), and

every tuple (c, b) ∈ BI results in a tuple (⊥, b, c) ∈ SI . �

We now outline the correctness of this reduction.

Well-defined reduction. For an atom R, either we have var(R)∩Vy = ∅ or var(R)∩
Vx = ∅. That is, no atom contains variables from both Vx and Vy. Due to the definition

of Q+, this atom would otherwise also contain both x and y. However, they cannot

appear in the same relation according to the definition of a free-path. The reduction is

therefore well defined, and it can be constructed in linear time via copy and projection.

Preserving FDs. The construction ensures that if an FD γ → α exists, then γ has

all the roles of α. Therefore, either α has no role and corresponds to the constant ⊥, or

every value that appears in α also appears in γ. In any case, all FDs are preserved.

1-1 mapping of answers. If a variable of Vz would have appeared in the head of

Q+, then by the definition of Q+, some zi would have been in the head as well. This

cannot happen according to the definition of a free-path. Therefore, Vz ∩ free(Q+) = ∅,
and the head only encodes the x and y values of the matrix multiplication problem, so

two different solutions to Enum∆Q+ 〈Q+〉 must differ in either x or y, and correspond to

different solutions of Enum∅〈Π〉. For the other direction, the head necessarily contains

the variables x and y. Therefore, two different solutions to Enum∅〈Π〉 correspond to

different solutions of Enum∆Q+ 〈Q+〉.
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Figure 5.1: The join tree in the proof of Lemma 5.14.

General FDs

Next we show how to lift the idea of this reduction to the case of general FDs. In the

case of unary FDs, we ensure that the construction does not violate a given FD γ → α,

by simply encoding the values of α to γ. In the general case, when allowing more than

one variable on the left-hand side of an FD γ1, . . . , γk → α, we must be careful when

choosing the variables γj to which we copy the values of α. Otherwise, as the following

example shows, we will not be able to construct the instance in linear time.

Example 5.13. Consider the query Q(x, y)← R1(x, z, t1), R2(z, y, t1, t2) over a schema

with the FD R2 : t1t2 → y. Note that Q = Q+ is acyclic but not free-connex, and that

(x, z, y) is a free-path in H(Q+). To repeat the idea shown in the unary case and ensure

that the FDs still hold, the variable on the right-hand side of every FD is encoded to

the variables on the left-hand side. If we encode y to t1, then R1 would contain the

encodings of x, y and z. This means that its size would not be linear in that of the

matrix multiplication instance, and we cannot hope for linear time construction. On

the other hand, if we choose to encode y only to t2, the reduction works. �

In the following central lemma, we describe how to carefully pick the variables to

which we assign roles in a way that meets the requirements we need for the reduction.

We prove requirements 1 and 2 to guarantee a one-to-one mapping between the results of

the two problems. Requirement 3 enables linear time construction, while requirement 4

is used to show that all FDs are preserved. The idea is that we consider the join-tree of

Q+ and define a partition of its atoms. We then define Vx and Vy to hold variables that

appear only in different parts of the tree, ensuring that no atom contains variables of

each. The running intersection property of a join-tree is then used to guarantee that

the sets are inclusive enough to correct all FD violations.

Lemma 5.14. Let Q be a self-join-free CQ over a schema (R,∆) such that Q+ is

acyclic but not free-connex. Further let (x, z1, . . . , zk, y) be a free-path of Q+. Then,

there exist sets of variables Vx, Vy and Vz such that:

1. x ∈ Vx, y ∈ Vy, {z1, . . . zk} ⊆ Vz.
2. Vz ∩ free(Q+) = ∅.
3. For every R ∈ atoms(Q+): var(R) ∩ Vy = ∅ or var(R) ∩ Vx = ∅.
4. For every U → v ∈ ∆Q+ s.t. v ∈ Vα with α ∈ {x, y, z}: U ∩ Vα 6= ∅.
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Proof. We first define a partition of the atoms of Q into two or three sets: Tx, Ty and

possibly Tmid. Let T be a join tree of H(Q+), and denote the hyperedges on the free-path

by e(x, z1), . . . , e(zk, y). Note that, by definition, each hyperedge of the free-path is a

vertex of T and an atom of Q+. By the running intersection property of T and since

the path is chordless, we can conclude that there is a simple path P from e(x, z1) to

e(zk, y) in T , such that e(z1, z2), . . . , e(zk−1, zk) lie on that path in the order induced

by the free-path. Let sepx be the first atom on the path P that does not contain x.

This exists because e(zk, y) does not contain x, as the free-path is chordless. Similarly,

let sepy be the last atom on P that does not contain y. Let Tx be the set of atoms v

such that the unique path from v to e(x, z1) in T does not go through sepx. Similarly,

let Ty be the set of atoms w such that the unique path from w to e(zk, y) in T does

not go through sepy. Next set Tmid = V (T ) \ (Tx ∪ Ty). Note that e(x, z1) ∈ Tx and

e(zk, y) ∈ Ty, but Tmid may be empty (this happens in the case that the free-path is of

length two). By definition, the atoms of Q+ are exactly Tx ∪ Tmid ∪ Ty, and next we

show that this union is disjoint. Figure 5.1 depicts the established partition.

We next show that the sets Tx and Ty are disjoint. Assume by contradiction that

there is some v ∈ Tx ∩ Ty. Let Px be the unique simple path from v to e(x, z1), and

recall that since v ∈ Tx it does not go through sepx. Similarly let Py be the unique

simple path from v to e(zk, y) that does not go through sepy.

We first claim that there exists some atoms w that appears in all three paths P ,

Px and Py. Take w to be the first atom on Px that is also in P and set Pwx to be the

simple path from v to w. Such an atom w exists because the last atom of Px is e(x, z1)

which is in P . Further set Pw to be the simple path from w to e(zk, y). Concatenating

the paths Pwx and Pw, we obtain a simple path from v to e(zk, y). Since the simple

paths in a tree are unique, this is exactly Py, and so w is also in Py.

Our second claim is that if an atom u is in both P and Px, then it contains the

variable x. Assume by contradiction that such an atom u does not contain x. Then u is

an atom on P not containing x, and by definition of sepx, the simple path from u to

e(x, z1) contains sepx. As this path is a subpath of Px, Px contains sepx, in contradiction

to the fact that v ∈ Tx. Similarly, if an atom is in both P and Py, then it contains y.

Combining the two claims, we have an atom w containing both x and y, in contra-

diction to the fact that a free-path is chordless by definition. Therefore we conclude

that Tx and Ty are indeed disjoint.

Now we are ready to define the sets of variables Vx, Vy and Vz. We define Vx

recursively to contain x and variables that imply those of Vx, but without variables that

appear outside of Tx. Vy is defined symmetrically. Vz contains z1, . . . , zk and variables

that imply those of Vz but without free variables. Formally,

Implies(V ) = {u ∈ var(Q) | ∃U → w ∈ ∆Q+ with w ∈ V and u ∈ U}
for V ⊆ var(Q), and we define via fixpoint iteration the following:

Vx: base Vx := {x}; rule Vx := (Vx ∪ Implies(Vx)) \ var(Ty ∪ Tmid).

Vy: base Vy := {y}; rule Vy := (Vy ∪ Implies(Vy)) \ var(Tx ∪ Tmid).
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Vz: base Vz := {z1, . . . zk}; rule Vz := (Vz ∪ Implies(Vz)) \ free(Q+).

We now prove that Vx, Vy and Vz meet the requirements of the lemma. Require-

ments 1 and 2 follow immediately from the definition of the sets. To prove requirement 3,

let R ∈ atoms(Q+). If R ∈ Tx, then by definition of Vy we have that var(R) ∩ Vy = ∅.
Otherwise, R ∈ Ty∪Tmid, and similarly var(R)∩Vx = ∅. It is left to show requirement 4.

Let δ = U → v ∈ ∆Q+ where v ∈ Vα. We first show the case of α = z. If U ∩Vz = ∅,
then U ⊆ free(Q+), and by the definition of Q+, v ∈ free(Q+), which is a contradiction

to the definition of Vz. Now we prove the case where α = x. The case α = y is

symmetric. Denote by e(U, v) an atom containing all variables of δ. As v ∈ Vx, we

know that e(U, v) /∈ Ty ∪ Tmid, therefore e(U, v) ∈ Tx. Assume by contradiction that

U ∩ Vx = ∅. Let u ∈ U . By definition of Vx, this means that u ∈ var(eu) for some

eu ∈ Ty ∪ Tmid. As Tx, Ty and Tmid are disjoint, we have that eu /∈ Tx, which means

that the path between eu and e(x, z1) goes through sepx. This means that the path

from eu to e(U, v) goes through sepx too, otherwise the concatenation of this path with

the path from e(U, v) to e(x, z1) would result in a path from eu to e(x, z1) not going

through sepx. By the running intersection property, u ∈ var(sepx). Since this is true

for all u ∈ U , it follows that v ∈ var(sepx) by definition of Q+, contradicting the fact

that v ∈ Vx.

With the sets Vx, Vy, Vz at hand, we can now perform the reduction for general FDs.

Lemma 5.15. Let Q be a self-join-free CQ over a schema (R,∆). If Q+ is acyclic

and not free-connex, then Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+〉.

Proof. Let IA,B = (AI , BI) be an instance of Enum∅〈Π〉 over the domain D = {1, . . . , n}.
We define an instance σ(IA,B) of Enum∆Q+ 〈Q+〉 based on the sets Vx, Vy and Vz from

Lemma 5.14 and the relations AI and BI . Since Q+ is acyclic but not free-connex, it

contains some free-path (x, z1, . . . , zk, y).

To define the instance σ(IA,B), we first fix the functions fA and fB:

fA(v, a, c) =


a : v ∈ Vx \ Vz
c : v ∈ Vz \ Vx
(a, c) : v ∈ Vx ∩ Vz
⊥ : otherwise

, fB(v, b, c) =


b : v ∈ Vy \ Vz
c : v ∈ Vz \ Vy
(b, c) : v ∈ Vy ∩ Vz
⊥ : otherwise

We partition all relational atoms of Q+ into two sets: R+
A and R+

B. The set R+
A is

defined as {R+ ∈ atoms(Q+) | var(R+)∩Vy = ∅} and R+
B is atoms(Q+)\R+

A. To obtain

an instance σ(IA,B) of Enum∆+〈Q+〉, we apply fA to the atoms in R+
A using the values

of AI , while the atoms in R+
B use fB and BI . That is, if R+(u1, . . . , um) ∈ R+

A, then

(R+)σ(IA,B) is defined to be {(fA(u1, a, c), . . . , fA(um, a, c)) | (a, c) ∈ AI}. Otherwise,

R+(u1, . . . , um) ∈ R+
B, and (R+)σ(IA,B) = {(fB(v1, b, c), . . . , fB(vp, b, c)) | (c, b) ∈ BI}.

The mapping τ is defined as the projection onto the variables x and y. Note that the

instance can be constructed in linear time, and the projection can be computed in

constant time.
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We now claim that σ(IA,B) is a database over the schema (R+,∆Q+), as all the

FDs of ∆Q+ are satisfied. Let δ = R+
j : U → v ∈ ∆Q+ . If v /∈ Vx ∪ Vy ∪ Vz, then δ holds

as v is assigned the value ⊥ in every tuple in (R+
j )σ(IA,B). Next assume that v ∈ Vx \Vz.

By point 4 of Lemma 5.14, there is some u ∈ U such that u ∈ Vx. Thus in every tuple

in (R+
j )σ(IA,B), if v is assigned the value a, then u is either assigned the value a or (a, c)

for some c ∈ {1, . . . , n} and in either case δ is satisfied. The proof for the cases where

v ∈ Vz \ (Vx ∪ Vy) and v ∈ Vy \ Vz is similar. Next assume that v ∈ Vx ∩ Vz. By point 4

of Lemma 5.14, there are some u1, u2 ∈ U such that u1 ∈ Vx and u2 ∈ Vz and for every

tuple in (R+
j )σ(IA,B), if v is assigned the value (a, c), then u1 is either assigned the value

a or (a, c), u2 is either assigned the value c or (a, c), and so δ is satisfied. The case

v ∈ Vy ∩Vz is similar. Note that the case where v ∈ Vx ∩Vy cannot occur due to point 3

of Lemma 5.14.

The structure of the path (x, z1 . . . , zk, y) ensures that answers to Enum∆Q+ 〈Q+〉
correspond to those of Enum∅〈Π〉 and vice versa. Indeed, let µ|{x,y} ∈ Π(IA,B). We

have that (µ(x), µ(z)) ∈ AI and (µ(z), µ(y)) ∈ BI . We define νµ : var(Q+) → D as

follows.

νµ(v) =



µ(x) : v ∈ Vx \ Vz,
µ(y) : v ∈ Vy \ Vz,
µ(z) : v ∈ Vz \ (Vx ∪ Vy),
(µ(x), µ(z)) : v ∈ Vz ∩ Vx,
(µ(y), µ(z)) : v ∈ Vz ∩ Vy,
⊥ : otherwise.

By definition, fA(v, µ(x), µ(z)) = νµ(v) and fB(v, µ(y), µ(z)) = νµ(v). Consider any

atom R+(u1, . . . , um) of Q+. If R+(u1, . . . , um) ∈ R+
A, then νµ(u1, . . . , um) is equal

to (fA(u1, µ(x), µ(z)), . . . , fA(um, µ(x), µ(z))) ∈ (R+)σ(IA,B). If R+(u1, . . . , um) ∈ R+
B,

we have that var(R+) ∩ Vx = ∅ by point 3 of Lemma 5.14. Then, νµ(u1, . . . , um) =

(fB(u1, µ(z), µ(y)), . . . , fB(um, µ(z), µ(y))) ∈ (R+)σ(IA,B). Therefore, νµ|free(Q+) is in

Q+(σ(IA,B)). Since x ∈ Vx \ Vz and y ∈ Vy \ Vz, we have that νµ(x) = µ(x) and

νµ(y) = µ(y), and so τ(νµ) = µ|{x,y}. Moreover, any answer µ′|free(Q+) ∈ Q+(σ(IA,B))

that has τ(µ′|free(Q+)) = µ|{x,y} assigns µ(x) to variables in Vx \ Vz, assigns µ(y) to

variables in Vy \ Vz and assigns ⊥ to variables not in Vx ∪ Vy ∪ Vz. By points 2 and 3

of Lemma 5.14, Vz ∩ free(Q+) = ∅ and Vx ∩ Vy = ∅, so these are the only variables in

free(Q+). Therefore µ′|free(Q+) = νµ|free(Q+).

Next assume that µ′|free(Q+) ∈ Q+(σ(IA,B)). Let R+
x be an atom containing x and z1

(such an atom exists by the definition of the free-path). By point 3 of Lemma 5.14 we have

var(R+)∩Vy = ∅, and R+ ∈ R+
A. By points 1 and 2 of Lemma 5.14 and since x is a free

variable, we have x ∈ Vx \ Vz and z1 ∈ Vz. Thus there exists some (a, c) ∈ AI such that

µ′(x) = fA(x, a, c) = a and µ′(z1) = fA(z1, a, c) ∈ {a, (a, c)}. Similarly, there exists some

(c′, b) ∈ BI such that µ′(y) = fB(y, b, c′) = b and µ′(zk) = fB(zk, b, c
′) ∈ {c′, (b, c′)}. It

remains to show that c = c′. We show by induction on i that µ′(zi) is either c or of the

form (t, c) with some value t. We know this fact for i = 1 since this is how we define c.
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If k > 1, then consider an atom R+
i (~vi) containing {zi−1, zi}. Then µ′ maps ~vi to some

tuple t ∈ R+
i that assigns zi−1 with a value of the form c or (t, c). Since zi ∈ Vz, t also

assigns zi with a value of such a form, so µ′(zi) is of the form c or (t, c) too. This shows

that c = c′. Therefore, τ(µ′) ∈ Π(IA,B). Moreover, since τ is simply a projection, τ(µ′)

is uniquely defined.

We have that Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉 by combining Theo-

rem 5.5 and Lemma 5.15. Therefore, having Enum∆〈Q〉 ∈ Enum〈lin,polylog〉 would

mean that Enum∅〈Π〉 ∈ Enum〈lin, polylog〉, which contradicts the conjecture of the

lower bound for matrix multiplication. This concludes the proof of Theorem 5.10. Note

that Theorem 5.10 does not contradict the dichotomy of Theorem 2.1: if for a given

query Q we have that Q+ is acyclic but not free-connex, then Q is not free-connex by

Proposition 5.4.

As enumeration can be achieved by random-permutation or random-access, Theo-

rem 5.10 also implies the hardness of these two tasks. Together with Corollary 5.9, this

proves a dichotomy.

Corollary 5.16. Let Q be a self-join-free FD-acyclic CQ over the schema (R,∆).

• If Q is FD-free-connex, then Enum∆〈Q〉 is in Enum〈lin, const〉, REnum〈lin, log〉,
RAccess〈lin, log〉 and TWAccess〈lin, log〉.
• If Q is not FD-free-connex, then Enum∆〈Q〉 is not in any of Enum〈lin,polylog〉,
REnum〈lin,polylog〉, RAccess〈lin, polylog〉, and TWAccess〈lin, polylog〉, assuming

sparseBMM.

5.2.2 FD-Cyclic CQs

In the previous section, we established a classification of FD-acyclic CQs, but we did

not consider FD-cyclic queries. Recall that, according to Theorem 2.1 and under certain

assumptions, self-join-free cyclic queries are not in Enum〈lin, const〉. In this section,

we therefore explore how FD-extensions can be used to obtain some insight on the

implications of this result in the presence of FDs. We show that, under the same

assumptions, self-join-free FD-cyclic queries that contain only unary FDs cannot be

evaluated in linear time. For schemas containing only unary FDs, this extends the

dichotomy from the previous section to all CQs.

Theorem 5.17. Let Q be a self-join-free CQ over a schema (R,∆), where ∆ only

contains unary FDs. If Q is FD-cyclic, then Decide∆〈Q〉 cannot be solved in linear

time, assuming Hyperclique.

Let H be a hypergraph. We denote by Tetra(k) the decision problem of whether H
contains a k-tetra. Using this notation, Hyperclique is the assumption that Tetra(k)

cannot be solved in time linear in the size of the graph for any k ≥ 3. The original

hardness proof for cyclic CQs shows that for every self-join-free cyclic CQ Q there exists
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k such that Tetra(k) can be reduced to Decide∅〈Q〉. As before, this hardness proof no

longer holds in the presence of FDs as the construction is not guaranteed to satisfy the

dependencies, and we present a modified reduction that satisfies the FDs. We will show

that if Q+ is cyclic and only unary FDs are present, the problem Tetra(k) for some k

can be reduced to Decide∆Q+ 〈Q+〉. The proof relies on the notion of pseudo-minors.

Definition 5.18 (Pseudo-Minors). A pseudo-minor of a hypergraph H = (V,E) is a

hypergraph obtained from H by a finite series of the following operations:

• vertex removal: removing a vertex from V and from all edges in E that contain it;

• edge removal: removing an edge e from E if some other e′ ∈ E contains it;

• edge contraction: replacing all occurrences of a vertex v (within every edge) with

a vertex u if u and v are neighbors.

To perform the said reduction, we will use a tetra pseudo-minor of a hypergraph

describing our query.

Definition 5.19. Let H be a cyclic hypergraph. We denote by Tetpm(H) the pairs of

pseudo-minors (Ha,Hb) of H such that:

1. Ha is obtained by a (possibly empty) set of vertex removal and edge removal

operations on H.

2. Hb is obtained by a (possibly empty) set of edge contraction and edge removal

operations on Ha.
3. Hb is a tetra.

4. Either Ha = Hb or Ha is a chordless cycle.

Given a query Q, we denote Tetpm(Q) = Tetpm(H(Q)).

Brault-Baron [BB13, Theorem 11] showed that a cyclic hypergraph H admits some

k-tetra as a pseudo-minor. We describe the proof here in our terminology.

Lemma 5.20 ([BB13], Theorem 11). If H is a cyclic hypergraph, then Tetpm(H) 6= ∅.

Proof. If H contains a chordless cycle C, then removing vertices not in C followed by

performing all possible edge removals results in a chordless cycle Ha. Then, Hb is a

3-tetra obtained by a repeated use of edge-contraction followed by performing all possible

edge removals. In this case, (Ha,Hb) ∈ Tetpm(H). If H does not contain a chordless

cycle, since it is not acyclic, it is non-conformal. Consider its smallest non-conformal

clique. The clique is not contained in any edge (since it is non-conformal), and it is a

k-tetra because of its minimality. Therefore, removing all vertices other than the clique,

and then performing all possible edge removals, results in a tetra Ha = Hb. Again,

(Ha,Hb) ∈ Tetpm(H).

For the reduction we present next, we first need to show that for an FD-cyclic query

Q, no pseudo-minor in Tetpm(Q+) contains all variables of any FD X → y. In the

following we assume that ∆ only contains non-trivial FDs, meaning y /∈ X.
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Lemma 5.21. Let Q be a self-join-free FD-cyclic CQ over a schema (R,∆). Let

(Ha,Hb) ∈ Tetpm(Q+) and Ha = (V,E). For every non-trivial X → y ∈ ∆Q+, we have

X ∪ {y} 6⊆ V .

Proof. We start with an observation regarding the FDs. Note that in H(Q+) some edge

contains the vertices X ∪ {y}, and by the construction of Q+, every edge that contains

X must also contain y. These properties still hold after any sequence of vertex removals

and edge removals as long as none of the vertices X ∪ {y} are removed. If at least one

of X ∪ {y} is removed, it immediately follows that X ∪ {y} 6⊆ V and we are done. Next,

we assume by way of contradiction that none of the vertices X ∪ {y} were removed, and

X ∪ {y} ⊆ V . Therefore, there must be an edge in Ha containing X ∪ {y}, and every

edge in Ha containing X also contains y.

We distinguish two cases. In the first case, Hb = Ha is a k-tetra obtained from

H(Q+) by a sequence of vertex and edge removals. If X∪{y} ⊆ V , then by the definition

of k-tetra it should contain the edge V \ {y}. This is a contradiction to the fact that

every edge in Ha containing X also contains y. In the second case, Ha is a cycle, and

Hb is a 3-tetra obtained by performing edge contraction and edge removal operations

on it. Since there must be an edge in Ha containing X ∪ {y}, and all edges are of size 2,

it must be that |X| = 1. Denote X = {x}. Since Ha is a cycle containing both x and y,

there should be at least one edge containing x but not containing y. This is again a

contradiction to the fact that every edge in Ha containing X also contains y.

We are now ready to establish the reduction. Given a k-tetra pseudo-minor of

Tetpm(Q+), we can reduce the problem of checking whether a hypergraph contains a

k-tetra to finding a Boolean answer to Q+.

Lemma 5.22. Let Q be a self-join-free FD-cyclic CQ over a schema (R,∆), where ∆

only contains unary FDs. Let (Ha,Hb) ∈ Tetpm(Q+) such that Hb is a k-tetra for some

k. Then, there is a linear time reduction Tetra(k) ≤m Decide∆Q+ 〈Q+〉.

Proof. Given an input hypergraph G for the Tetra(k) problem, we define an in-

stance I of Decide∆Q+ 〈Q+〉. We consider a sequence of pseudo-minors H(Q+) =

H1,H2, . . . ,Hm = Hb, each pseudo-minor is obtained by performing one operation

over the previous one, where Hj = Ha for some 1 ≤ j ≤ m. We treat hypergraphs

as describing CQs. That is, to the hypergraph Hi we associate a query Qi such that

H(Qi) = Hi. Every edge e of Hi corresponds to an atom in Qi with a relational symbol

Rie, and the vertices of e are its variables. We assume that the variables in every

atom are sorted by some total order. In the following, we construct instances Ii to

these queries. It is possible to define a instance Im such that deciding Qm(Im) solves

Tetra(k) [BB13, Lemma 20]. We describe how to inductively build an instance I1 = I

such that deciding Q+(I) solves the same problem.
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Constructing I. We first define Im. For every edge e of Hm, we define a relation

Rme that contains all edges of G that have the same size as e. A tuple of Rme consists of

the vertices of such an edge sorted by some total order on the vertices of G. We now

define Ii given Ii+1. We distinguish three cases according to the type of pseudo-minor

operation that leads from Hi to Hi+1.

• edge removal: For every e′′ ∈ Hi+1, set Rie′′ = Ri+1
e′′ . Then, let e be the edge

removed, and let e′ be an edge containing it. Set Rie to be a copy of Ri+1
e′ projected

accordingly.

• edge contraction: Let v be the vertex replaced by its neighbor u. For any edge

e ∈ Hi contracting to an edge e′ ∈ Hi+1, set Rie to be a copy of Ri+1
e′ , and assign

the attribute v a copy of the value of u in every tuple. Then, if u 6∈ e, project u

out of Rie. For every other edge e′′ ∈ Hi, set Rie′′ = Ri+1
e′′ .

• vertex removal: Let v be the vertex removed from an edge e ∈ Hi, resulting in

an edge e′ ∈ Hi+1. Expand Ri+1
e′ to Rie by copying Ri+1

e′ , and assign v with a

constant ⊥ in every tuple. Next, apply the following FD-correction steps on v:

1. In every tuple, concatenate to the value of v the values of variables it implies.

These variables are defined via fixpoint iteration as ImpliedBy(v) = {v} and

ImpliedBy(v) = {w | t→ w ∈ ∆Q+ , t ∈ ImpliedBy(v)} ∪ ImpliedBy(v).

For each w ∈ ImpliedBy(v) \ {v}, if Ri(~u) is an atom such that ~u[k] = v and

~u[j] = w, then in every tuple t ∈ Ri, replace t[k] with (t[k], t[j]).

2. After the value of v is determined, concatenate the value of v to the variables

implying it. These are defined via fixpoint iteration as Implies(v) = {v}
and Implies(v) = {u | u → t ∈ ∆Q+ , t ∈ Implies(v)} ∪ Implies(v). For each

variable u ∈ Implies(v) \ {v}, if Ri(~u) is an atom such that ~u[k] = v and

~u[j] = u, then in every tuple t ∈ Ri, replace t[j] with (t[j], t[k]).

For every edge e′′ ∈ Hi not containing v, set Rie′′ = Ri+1
e′′ .

The overall construction of the instance I can be done in linear time, since there

is a constant number of pseudo-minor operations, each requiring a linear number of

computational steps.

I satisfies ∆Q+. We show that I satisfies the FDs in ∆Q+ by induction: we claim

that for each Hi all FDs x → y such that x, y ∈ V (Hi) are satisfied. According to

Lemma 5.21, Ha and therefore all of Hj , . . . ,Hm do not contain all variables of any FD.

Thus, our claim trivially holds for Hj , . . . ,Hm. We now prove our claim for Hi where

i ≤ j − 1. Consider an FD δ = x→ y such that x, y ∈ V (Hi). There are three cases:

• If x, y ∈ V (Hi+1), then by the induction assumption δ is satisfied in Hi+1. If Hi+1

is obtained by edge removal, then the only new relation in Hi is a projection of

a relation of Hi+1, and therefore δ is satisfied in all relations. Otherwise, Hi+1

is obtained by vertex removal. If the value of y is the same in Rie as in Ri+1
e , we

are done by the induction assumption. Otherwise, y is changed due to the second

FD-correction step, and the vertex removed is some z such that y → z. In this
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case, since x transitively implies z, both x and y are concatenated with the same

values, and δ is still satisfied.

• If x 6∈ V (Hi+1), then Hi+1 is obtained by the removal of the vertex x, and the

first FD-correction step ensures that x contains a copy of the values of y in every

tuple where they both appear. Therefore δ is satisfied.

• If y 6∈ V (Hi+1), then Hi+1 is obtained by the removal of the vertex y. The second

FD-correction step ensures that x contains a copy of the values of y, and δ is

satisfied.

Correctness. We know [BB13, Lemma 20] that there is a solution to Qm(Im) iff

there exists a subhypergraph of G isomorphic to Ht, and in fact every mapping µ that

can be used for the evaluation corresponds to such a subhypergraph. We claim that

every mapping used for evaluating Qi+1(Ii+1) corresponds to a mapping that can be

used for Qi(Ii), and vice versa. This was already shown in case Hi+1 is obtained by

Hi via edge contraction [BB13, Lemma 15] or edge removal [BB13, Lemma 14], and it

was shown for vertex removal [BB13, Lemma 13] when the construction simply assigns

the new vertex with a constant and skips the FD-correction steps. Let Hi+1 be a

pseudo-minor obtained from Hi via vertex removal, and denote by I0
i the instance

constructed from Ii+1 as described but without the FD-correction steps. It is left to

show that a mapping µ0 that satisfies Qi(I
0
i ) corresponds to a mapping µ that satisfies

Qi(Ii), and vice versa. This will conclude that G has a subhypergraph isomorphic to Ht
(a k-tetra) iff Q+(I) 6= ∅.

First we claim that if x implies y and both x and y are present in Hi (that is, for

all 1 ≤ j < i the operation between Hj and Hj+1 is not the removal of x or y), then

y appears in every atom containing x in Hi. This will help us show that we perform

the same changes over x in all relations. Since Q+ is an FD-extension and only unary

FDs are present, we are guaranteed that if x implies y, then y is present in every edge

of H(Q+) = H1 where x appears. This property is preserved under vertex removal

and edge removal operations (as long as x and y are not removed), which are the only

operations that can be performed between H1 and Hi (this is true since we perform

vertex removal on Hi and, by Definition 5.19, vertex-removal operations only occur

between H1 and Ha, and edge-removal is the only other operation allowed there).

We now show that given µ0 that satisfies Qi(I
0
i ) there is a mapping µ that satisfies

Qi(Ii), and vice versa. We show this by induction, considering one FD-correction step

involving one variable at a time. Consider an FD-correction step of the first type on a

vertex v implying w, where both v and w are present in Hi. In any atom R(~u) such that

~u[k] = v, we showed that there exists an index j such that ~u[j] = w. For every tuple

t0 ∈ R0, there is a similar tuple t ∈ R with the only difference being t[k] = (t0[k], t0[j]).

Therefore, by defining µ(v) = (µ0(v), µ0(w)) and µ(u) = µ0(u) for all other variables

u 6= v, every tuple that is used in the evaluation of µ0 in I0
i results in a tuple that

can be used in the evaluation of µ in Ii. Indeed, µ is a valid evaluation of Qi(Ii). A
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similar argument holds similarly for the opposite direction and for the second type of

FD-correction step. For the opposite direction for example, if µ(v) = (av, aw), we define

µ0(v) = av.

Theorem 5.17 is an immediate consequence of Lemma 5.22.

Proof of Theorem 5.17. Assume for the sake of contradiction that Q is FD-cyclic and

Decide∆〈Q〉 is solvable in linear time. Theorem 5.5 implies a linear time reduction

Decide∆Q+ 〈Q+〉 ≤m Decide∆〈Q〉. Therefore, Decide∆Q+ 〈Q+〉 can be solved in linear

time as well. As Q+ is cyclic, there exists a k-tetra pseudo-minor Hpm ∈ Tetpm(Q+) for

some k ≥ 3. According to Lemma 5.22, Tetra(k) is also solvable in linear time.

In terms of enumeration complexity, Theorem 5.17 means that any enumeration

algorithm for such a query cannot output a first solution (or decide that there is

none) within linear time. As a corollary, we get that for a self-join-free FD-cyclic CQ

over a schema containing only contains unary FDs there is no enumeration, random-

permutation or random-access algorithm with only linear preprocessing time. Together

with Corollary 5.16, this results in a dichotomy.

Corollary 5.23. Let Q be a self-join-free CQ over a schema (R,∆), where ∆ only

contains unary FDs.

• If Q is FD-free-connex, then Enum∆〈Q〉 is in Enum〈lin, const〉, REnum〈lin, log〉,
RAccess〈lin, log〉 and TWAccess〈lin, log〉.
• If Q is not FD-free-connex, then Enum〈Q〉 is not in any of Enum〈lin,polylog〉,
REnum〈lin, polylog〉, RAccess〈lin, polylog〉 and TWAccess〈lin, polylog〉 assuming

sparseBMM.

We conclude this section with a short discussion on its extension to general FDs.

The following example shows that our proof for Theorem 5.17 cannot be lifted to general

FDs. Exploring this extension is left for future work.

Example 5.24. Consider Q() ← R1(x, y, u), R2(x,w, z), R3(y, v, z), R4(u, v, w) over a

schema with all possible two-to-one FDs in R1, R2 and R3. That is,

∆ = {xy → u, yu→ x, ux→ y, zy → v, yv → z, vz → y, xz → w, zw → x,wx→ z}.
Note that Q+ = Q. The hypergraph H(Q+) is cyclic, see Figure 5.2, yet it is unclear

whether Q can be solved in linear time, and whether Tetra(3) can be reduced to

answering Q+. Using Lemma 5.21, H(Q+) has triangle pseudo-minors that do not

contain all variables of any FD. Consider for example the one obtained by removing all

vertices other than x, y, z. A construction similar to that of Lemma 5.22 would assign u

with the values of x and y, assign v with the values of y and z, and assign w with the

values of x and z. This results in the edge {u, v, w} containing all three values of any

possible triangle, meaning that this edge cannot be constructed in linear time. Other

choices of triangle pseudo-minors lead to similar encoding problems. �
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Figure 5.2: The hypergraph H(Q) = H(Q+) for Example 5.24.

5.3 Extended Settings

We devote the final section to extend the results of this chapter to cardinality depen-

dencies, CQs with disequalities and UCQs.

5.3.1 Cardinality Dependencies

In this section, we show that our results also apply to CQs over schemas with cardinality

dependencies. Cardinality Dependencies (CDs) [AFG16, CFWY14] are a generalization

of FDs, where the left-hand side does not uniquely determine the right-hand side, but

rather provides a bound on the number of distinct values it can have. Formally, ∆ is the

set of CDs of a schema S = (R,∆). Every δ ∈ ∆ has the form (Ri : A→ B, c), where

Ri : A→ B is an FD and c is a positive integer. A CD δ is satisfied by an instance I

over S, if every set of tuples S ⊆ (Ri)
I that agrees on the indices of A, but no pair of

them agrees on all indices of B, contains at most c tuples. It follows from the definition

that δ is an FD if c = 1.

Denote by ∆FD the FDs obtained from a set of CDs ∆ by setting all c values to

one. Given a query Q over (R,∆), we define the CD-extension Q+ of Q to be the same

as the FD-extension of Q over (R,∆FD). The schema S+ is defined with the original

c values, and the extended CDs are ∆Q+ = {(R+
i : A → b, c) | ∃(Rj : A → B, c) ∈

∆, b ∈ B,A ∪ {b} ⊆ var(R+
i )}. Note that FD-extensions are indeed a special case of

CD-extensions.

The hardness results extend to CDs because they are not more restrictive than

FDs: Since every instance that preserves the FDs ∆FD also preserves the CDs ∆, we

conclude that Enum∆FD〈Q〉 ≤e Enum∆〈Q〉. When only FDs are present, we can apply

Theorem 5.5, and get Enum∆FD
Q+
〈Q+〉 ≤e Enum∆FD〈Q〉. By combining the two, we get

the following lemma.

Lemma 5.25. Let Q be a CQ over a schema (R,∆), where ∆ is a set of CDs, and let

Q+ be its CD-extension. Then Enum∆FD
Q+
〈Q+〉 ≤e Enum∆〈Q〉.

Defining the classes of CD-acyclic and CD-free-connex queries similarly to the case

with FDs, Lemma 5.25 implies that all lower bounds presented in this chapter hold for
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CDs. For example, if Q is self-join-free and CD-acyclic but not CD-free-connex and

Enum∆〈Q〉 ∈ Enum〈lin,polylog〉, then by Lemma 5.25 we have that Enum∆FD
Q+
〈Q+〉 is

in Enum〈lin,polylog〉 as well. According to Lemma 5.15 this means that Enum∅〈Π〉 is

in Enum〈lin, polylog〉, in contradiction to our assumption about the hardness of Boolean

matrix multiplication. So Enum∆〈Q〉 6∈ Enum〈lin,polylog〉 assuming sparseBMM.

Similarly, we conclude the hardness of self-join-free CD-cyclic CQs over schemas that

contain only unary CDs, of the form (A→ B, c) with |A| = 1. By combining Lemma 5.25

with Theorem 5.17, we conclude that it is not possible to find a first answer to such

queries in linear time, assuming Hyperclique.

In order to extend the positive results, we need to show that the CD-extension is at

least as hard as the original query w.r.t. enumeration. For this, we need a relaxation of

exact reductions: The reduction denoted Enum〈R1〉 ≤e′ Enum〈R2〉 requires that one

output of Enum〈R1〉 corresponds to at most a constant number of outputs of Enum〈R2〉
(instead of a bijection between the sets of outputs).

Lemma 5.26. Let Q be a CQ over a schema (R,∆), where ∆ is a set of CDs, and let

Q+ be its CD-extension. Then Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉.

Proof. When dealing with FDs, we assume that the right-hand side has only one

variable, as we can use such FDs to describe all possible ones. With CDs this no

longer holds. Nonetheless, every instance of the schema S = (R,∆) satisfies ∆1 =

{(Ri : A → b, c) | (Ri : A → B, c) ∈ ∆, b ∈ B}, so is also an instance of S1 = (R,∆1).

Therefore, Enum∆〈Q〉 ≤e Enum∆1〈Q〉 using the identity mapping. It is left to show

that Enum∆1〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉. The proof idea is the same as in Theorem 5.5,

except now, for each tuple extended from RIi to RI
+

i we can have at most c new tuples.

Since this process is only done a constant number of times, the construction still only

requires linear time, and the rest of the proof holds. Note that now one solution of

Enum∆+〈Q+〉 may correspond to several solutions of Enum∆1〈Q〉, as some variables

were possibly added to the head. However, as the possible values of the added head

variables are bounded by CDs, the number of solutions of Q+ that correspond to one

solution of Q is bounded by a constant.

We now formally prove that Enum∆1〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉. Denote Q by Q(~p)←
R1(~v1), . . . , Rm(~vm). Given an instance I of Enum∆〈Q〉, we define σ(I). We start by

removing tuples that interfere with the extended dependencies. For every dependency

δ = (Rj : X → y, c) ∈ ∆1 and every atom Rk(~vk) that contains X ∪ {y}, we correct

Rk according to δ: we only keep tuples of RIk that agree with some tuple of RIj over

the values of X ∪ {y}. Next, we follow the extension of the schema and extend the

instance accordingly. This phase results in a sequence of instances I0, I1, . . . , In = σ(I)

that correspond to a sequence of queries Q = Q0, Q1, . . . , Qn = Q+ such that each

query is the result of extending an atom or the head of the previous query according

to an FD. If in step i the head was extended, we set Ii+1 = Ii. Now assume some

relation Rk is extended according to some CD (Rj : X → y, c). For each tuple t ∈ RIik ,
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if there is no tuple s ∈ RIij that agrees with t over the values of X, then we remove t

altogether. Otherwise, we consider all values such tuples assign y. Denote those values

by a1, . . . , am, and note that due to the CD, m ≤ c. We copy t to R
Ii+1

k m times, each

time assigning y with a different value of a1, . . . , am. Given an answer µ ∈ Q+(σ(I)),

we define τ(µ) to be the projection of µ to free(Q).

We need to show that Q(I) = {µ|free(Q) : µ|free(Q+) ∈ Q+(σ(I))}, and that an element

of the left-hand side may only appear a constant amount of times on the right-hand

side. First, if µ|free(Q+) ∈ Q+(σ(I)), since all tuples of σ(I) appear (perhaps projected)

in I, then µ|free(Q) ∈ Q(I). It is left to show the opposite direction: if µ|free(Q) ∈ Q(I)

then µ|free(Q+) ∈ Q+(I+). We show by induction on Q = Q0, Q1, . . . , Qn = Q+ that

µ|free(Qi) ∈ Qi(Ii). The induction base holds since in the cleaning phase we did not

remove “useful” tuples. Since µ|free(Q) ∈ Q(I), there exist tuples, one of each relation of

the query, that agree on the values of X ∪ {y} (they all assign them with the values

µ assigns them). These tuples were not removed in the cleaning phase, and therefore

µ|free(Q) ∈ Q(I0). Next assume that µ|free(Qi) ∈ Qi(Ii), and we want to show that

µ|free(Qi+1) ∈ Qi+1(Ii+1). This claim is trivial in case the head was extended. Note

that there can be at most c− 1 different answers µ′|free(Qi+1) in Qi+1(Ii+1) such that

µ|free(Qi+1) 6= µ′|free(Qi+1) but µ|free(Qi) = µ′|free(Qi), as the added variable y is bound by

the CD to have at most c possible values. Now consider the case where an atom Rk(~vk)

was extended according to a CD (Rj : X → y, c). The tuple µ(~vk) ∈ RIik was extended

with the value µ(y) due to the tuple µ(~vj) ∈ RIij that agrees with it on the values of

X, and so µ(~vk, y) ∈ RIi+1

k . In case of self-joins, other atoms with the relation Rk are

extended with a new and distinct variable. Such variables will be mapped to this value

µ(y) as well. Overall, we have that µ (extended by mappings of the fresh variables) is

also a homomorphism in Qi+1(Ii+1).

We can now extend our positive results to accommodate CDs. Let Q be a

CD-free-connex CQ over a schema (R,∆), where ∆ contains CDs. According to

Lemma 5.26, Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉, and due to Theorem 2.1,

Enum∅〈Q+〉 ∈ Enum〈lin, const〉. The class Enum〈lin, const〉 is closed under this type of

reduction since we assume we have access to enough space. To avoid printing duplicates,

we need to store previous results in a lookup table, and verify that a generated result

is new before printing it. This alone is not enough, as we can have a long sequence of

generating known results, and then the delay between generating new results can be

larger than constant. For this reason, we delay the results. If every answer to Enum∆〈Q〉
corresponds to at most c answers to Enum∅〈Q+〉, we save the newly generated results in

a queue, and after generating c results we pop and print a result from the queue. This

guarantees that the queue is never empty when accessed, and the results are printed

with constant delay. This type of manipulation is formalized in Chapter 3 as part of

the Cheater’s Lemma (Lemma 3.4). As a result, Enum∆〈Q〉 ∈ Enum〈lin, const〉, and

we deduce the following theorem.
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Theorem 5.27. Let Q be a CD-acyclic CQ with no self-joins over the schema (R,∆),

where ∆ is a set of CDs.

• If Q is CD-free-connex, then Enum∆〈Q〉 ∈ Enum〈lin, const〉.
• If Q is not CD-free-connex, then Enum∆〈Q〉 6∈ Enum〈lin, polylog〉, assuming

sparseBMM.

Note that, while the hardness results with respect to enumeration imply the hardness

of random-permutation and random access, this is not the case for the positive results.

In particular, we do not have that the classes REnum〈lin, log〉 and RAccess〈lin, log〉 are

closed with respect to the type of relaxed reduction used in Lemma 5.26. For example,

if we have an algorithm that produces outputs with uniformly-random order but every

answer appears in an output a different amount of times, the trick of storing results to

avoid duplicates does not result in a uniformly-random order.

5.3.2 CQs with Disequalities

As mentioned in Section 3.4.1, in the context of classifying CQs over a general schema

with respect to Enum〈lin, const〉, disequalities have no effect on the enumeration com-

plexity [BDG07]. In this section, we show that all enumeration results of this chapter

apply to CQs with disequalities. To keep the proof ideas clear, we begin by assuming

that the schema only contains FDs, and we incorporate CDs at the end of this section.

A CQ with disequalities over a schema (R,∆) is an expression of the form

Q(~p)← R1(~v1), . . . , Rm(~vm), w1 6= w2, . . . , wk−1 6= wk

where Q(~p) ← R1(~v1), . . . , Rm(~vm) is a CQ denoted by Qbase, and w1, . . . , wk are

variables in var(Q). We denote dis(Q) = {w1 6= w2, . . . , wk−1 6= wk}. The evaluation is

Q(I) = {µ|~p ∈ Qbase(I)|∀wi 6= wj ∈ dis(Q) : µ(wi) 6= µ(wj)}.
The structural definitions of CQs with disequalities depend only on their bases.

That is, Q is said to be acyclic if Qbase is acyclic, and we similarly define cyclic and

free-connex CQs with disequalities. The FD-extension of a CQ with disequalities is

denoted by Q+. The base extends as before, and the disequalities remain the same.

That is, (Q+)base = Q+
base is the FD-extension of Qbase, and dis(Q+) = dis(Q). We say

that Q is FD-acyclic if Qbase is FD-acyclic, and similarly define FD-free-connex and

FD-cyclic CQs with disequalities.

We first show that our positive results apply also to CQs with disequalities. The

following lemma is the equivalent of the positive case of Theorem 5.5. In the proof, the

reduction from the query to its extension works as before for the base query, and the

disequalities are satisfied as they remain the same during the extension.

Lemma 5.28. Let Q be a CQ with disequalities over a schema (R,∆), and let Q+ be

its FD-extension. Then Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉.

Proof. Recall that Q+
base is the FD-extension of Qbase. According to the proof of Theo-

rem 5.5, we can show that Enum∆〈Qbase〉 ≤e Enum∆Q+ 〈Q+
base〉 by using a construction σ
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such that µ|free(Q) ∈ Qbase(I) iff µ|free(Q+) ∈ Q+
base(σ(I)). We use this same construction

to show that Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉. By definition we have that µ|free(Q) ∈ Q(I)

iff µ|free(Q) ∈ Qbase(I) and in addition ∀u 6= w ∈ dis(Q) : µ(u) 6= µ(w). As in the proof

of Theorem 5.5, and since dis(Q) = dis(Q+), this is true iff µ|free(Q+) ∈ Q+
base(σ(I)) and

∀u 6= w ∈ dis(Q+) : µ(u) 6= µ(w). This is equivalent to µ|free(Q+) ∈ Q+(σ(I)). We

conclude that µ|free(Q) ∈ Q(I) iff µ|free(Q+) ∈ Q+(σ(I)).

Combining Lemma 5.28 with the full version of Theorem 2.1 that holds for CQs with

disequalities [BDG07], we have that if Q is an FD-free-connex CQ with disequalities

over a schema (R,∆), then Enum∆〈Q〉 ∈ Enum〈lin, const〉.
We now discuss the lower bound. In the next lemma, we use the same idea proposed

by Bagan et al. [BDG07] to extend their negative results to CQs with disequalities.

Lemma 5.29. If Q is a CQ with disequalities over a schema (R,∆), then we have that

Enum∆〈Qbase〉 ≤e Enum∆〈Q〉.

Proof. Given an instance I of Enum∆〈Qbase〉, we construct σ(I) by assigning every

variable a disjoint domain (this is the same construction used in Chapter 3 as part of

Lemma 3.11). Formally, for every atom R(~v) of Qbase and every tuple (c1, . . . , ct) ∈ RI ,
we have the tuple ((c1, ~v[1]), . . . , (ct, ~v[t])) in Rσ(I). We claim that the answers of Qbase

over I are exactly those of Q over σ(I) if we omit the variable names. That is, we define

τ : dom × var(Q)→ dom as τ((c, v)) = c, and show Qbase(I) = τ(Q(σ(I))).

Let µ|free(Q) ∈ Qbase(I). Then, for every atom R(~v) of Qbase, there exists a tuple

(µ(~v[1]), . . . , µ(~v[t])) ∈ RI . It results in ((µ(~v[1]), ~v[1]), . . . , (µ(~v[t]), ~v[t])) ∈ Rσ(I) by

definition of σ. Therefore, as we define the mapping fµ : var(Q)→ dom × var(Q) to be

fµ(u) = (µ(u), u), we have that fµ|free(Q) ∈ Qbase(σ(I)). Note that for all u,w ∈ var(Q)

with u 6= w we have fµ(u) 6= fµ(w). Therefore, fµ ∈ Q(σ(I)) as all disequalities in dis(Q)

are satisfied. Since τ ◦ fµ = µ, we have that µ|free(Q) ∈ τ(Q(σ(I))), and this concludes

that Qbase(I) ⊆ τ(Q(σ(I))). The opposite direction holds as well. If ν|free(Q) ∈ Q(σ(I)),

then for every atom R(~v) in Q we have that ν(~v) ∈ Rσ(I). By construction, τ(ν(~v)) ∈ RI ,
and therefore τ ◦ ν|free(Q) ∈ Qbase(I).

By combining Theorem 5.5 with Lemma 5.29, we get the following reduction.

Lemma 5.30. If Q is a CQ with disequalities over a schema (R,∆), then we have that

Enum∆Q+ 〈Q+
base〉 ≤e Enum∆〈Q〉.

Lemma 5.30 means that the hardness results of this chapter extend to CQs with

disequalities. In particular, if a self-join-free Q is FD-acyclic but not FD-free-connex,

then Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+
base〉 ≤e Enum∆〈Q〉 by Lemma 5.15 and Lemma 5.30.

We get that then Enum∆〈Q〉 6∈ Enum〈lin, polylog〉 assuming sparseBMM. Similarly,

we can use Lemma 5.22 and Lemma 5.30 to show that if a self-join-free Q is FD-cyclic,

and the schema only contains unary FDs, then Decide∆〈Q〉 cannot be solved in linear

time assuming Hyperclique.
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We next consider CQs with disequalities in the presence of CDs. The ideas presented

in Section 5.3.1 and Section 5.3.2 can be combined to show the following lemma.

Lemma 5.31. Let Q be a CQ with disequalities over a schema (R,∆), where ∆ is a

set of CDs. We have:

• Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉
• Enum∆FD

Q+
〈Q+

base〉 ≤e Enum∆〈Q〉

The proof for Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉 works similarly to that of Lemma 5.28,

except it builds upon Lemma 5.26 instead of Theorem 5.5. We use the same reduction

as in Lemma 5.26, and the disequalities remain unchanged. By combining Lemma 5.29

with Lemma 5.25, he have that Enum∆FD
Q+
〈Q+

base〉 ≤e Enum∆〈Qbase〉 ≤e Enum∆〈Q〉.
Lemma 5.31 along with Lemma 5.15, Lemma 5.22 and the positive results by Bagan

et al. [BDG07, Theorem 13, Theorem 17] prove that all results presented in this chapter

apply to CQs with disequalities over schemas with cardinality dependencies. The

following theorem summarizes our classification results.

Theorem 5.32. Let Q be a CQ with disequalities over a schema (R,∆), where ∆ is a

set of CDs.

• If Q is CD-free-connex, then Enum∆〈Q〉 ∈ Enum〈lin, const〉.
• If Q is self-join-free, CD-acyclic but not CD-free-connex, then Enum∆〈Q〉 6∈

Enum〈lin,polylog〉, assuming sparseBMM.

• If Q is self-join-free, CD-cyclic and ∆ contains only unary CDs, then Decide∆〈Q〉
cannot be solved in linear time, and in particular Enum∆〈Q〉 6∈ Enum〈lin, polylog〉,
assuming Hyperclique.

5.3.3 Unions of CQs

Enumeration

The techniques used for the positive results in this chapter and in Chapter 3 are similar:

we extend the CQs, and if the extension has a free-connex form, then the original query

is tractable. We devote this section to discussing whether there is a need to combine

these two forms of extension and how this can be done. First, we discuss the need to

combine the two techniques.

Example 5.33. Consider the UCQ Q = Q1 ∪Q2 with:

Q1(x,w, u)←R1(x, y), R2(y, z), R3(z, w), R4(u)

Q2(x,w, u)←R1(x,w), R2(t, u)

over a schema with the FD R3 : 2→ 1.

The CQ Q1 in itself is not free-connex, as it contains the free-path (x, y, z, w). Even

if we take the FD into account, Q1 is not tractable. The FD-extension of Q1 is obtained

by adding z to the query head due to the FD w → z.

Q+
1 (x,w, u, z)← R1(x, y), R2(y, z), R3(z, w), R4(u).
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Q+
1 is not free-connex as it contains the free-path (x, y, z). This means that by using

the FD technique alone, Q does not become tractable. If we take the union into account

but ignore the FD, Q2 can provide {x, y, z} to Q1, but adding atoms with any subset of

these variables cannot make Q1 tractable, because it cannot prevent the appearance

of a free-path between x and w. It can only shorten it from (x, y, z, w) to (x, z, w).

This means that by using the union techniques alone, Q does not become tractable.

Nonetheless, if we combine the extensions, we both add z to the head and add an atom

with {x, y, z}, we get the following tractable extension:

Q++
1 (x,w, u, z)← R1(x, y), R2(y, z), R3(z, w), R4(u), R′(x, y, z).

Practically, this means that Q can be solved efficiently by first solving Q2, then using

its results as another atom R′, solving Q++
1 with the help of R′, and translating every

answer to Q++
1 to an answer to Q1 by projecting out z. The FD guarantees that the

translation phase does not result in duplicates. Therefore, Q is tractable. If we had a

cardinality dependency instead of an FD, we would have a constant number of duplicates

per answer to Q1, and the duplicates could be ignored efficiently using the Cheater’s

Lemma (Lemma 3.4). Thus, with the CD, Q would remain tractable. �

Example 5.33 shows that if we have UCQs over a schema with FDs, we can identify

additional tractable cases by combining the two techniques. The two types of extensions

can easily be combined in any order. To show this, we just need to modify the definitions

of a union extension to account for cardinality dependencies.

Definition 5.34. Let Q = Q1 ∪ . . . ∪ Qn be a UCQ over a schema with CDs. A

CD-union extension of Q1 is obtained by the addition of any number of atoms R(~v) to

Q1 such that ~v is provided by some CD-extension of some Qj ∈ Q, and R is a fresh

relational symbol. By way of recursion, the variables ~v may alternatively be provided

by a CD-extension of a union extension of some Qj ∈ Q.

With this definition, we can show the tractability of UCQs with a free-connex

CD-union extension.

Theorem 5.35. Let Q be a UCQ over a schema with cardinality dependencies. If Q

has a free-connex CD-union extension, then Enum〈Q〉 ∈ Enum〈lin, const〉.

Proof Sketch. Follow the proof of Theorem 3.9. Whenever the proof uses the CDY

algorithm for evaluating the individual CQs with linear preprocessing and constant

delay, use the adjusted algorithm for CD-extensions (Theorem 5.27) instead.

Note that in Example 5.33 the order of applying the extension does not matter.

That is, first adding R′ and then adding z wherever w appears produces the same query

as first adding z and then adding R′. This is not always the case. Consider the same

UCQ as before but with the FD R3 : 1→ 2 instead of the reverse FD. When we treat

the FD as between variables in Q1, we get z → w, and we can add w wherever z appears
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in Q1 as an FD-extension. The individual extensions are still not enough: adding w to

R2 results in the free-path (x, y, w), and adding an atom with any subset of {x, y, z}
does not help as before. The combination of the two extensions results in a free-connex

CQ if we first add the provided atom and only then apply the FD. We get:

Q′1(x,w, u)←R1(x, y), R2(y, z, w), R3(z, w), R4(u), R′(x, y, z, w)

If we apply the extensions in the opposite order, we do not have w in R′, and we have

the free-path (x, z, w), so the extension is not tractable.

In conclusion, we saw that the two techniques can and should be combined to find

more tractable cases. However, one should be aware that it is not enough to first take

the CD-extensions of all CQs in the union and then apply union-extensions. The order

in which the different extensions are combined matters.

Random Access and Random Permutation

We showed in Section 5.1 that for any FD-free-connex CQ there is an extended free-

connex CQ such that there is a bijection between the two sets of answers. This means

that by applying Theorem 4.12 on the extension, and then applying Theorem 5.5 to

translate the answers, we can obtain a data structure that allows efficient counting,

random-access and inverted-access of FD-free-connex CQs. This data structure can

then be used to achieve efficient random-permutation algorithms for UCQs, and we

can conclude Theorem 4.26 and Theorem 4.24 for FD-free-connexity as explained in

Section 4.3 based on this structure.

Theorem 5.36. Let Q be a union of FD-free-connex CQs.

• There exists a random-permutation algorithm for answering Q that uses linear

preprocessing and expected logarithmic delay.

• If the intersection of every subset of the CQs is also FD-free-connex, then

Enum〈Q〉 ∈ REnum〈lin, log〉.

As mentioned before, in the case of CDs we do not have a bijection between the

answers, so we cannot use CDs to extend our results in the same way.

5.4 Note on Space Usage

The algorithms presented in this chapter use linear memory during preprocessing and

differ on the amount of memory they use for writing during enumeration. Recall

that CD◦Lin denotes the problems that can be solved with the same time bounds as

Enum〈lin, const〉, but with the additional restriction that the available space for writing

during the enumeration phase is constant (see Section 3.4.2). All results regarding

Enum〈lin, const〉 presented prior to the section with the extended settings (Section 5.3)

also apply for CD◦Lin. All lower bounds shown for Enum〈lin, const〉 imply the same

lower bounds for the more restrictive CD◦Lin. The positive results rely on Theorem 5.5,
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where we show that Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉, and the mapping used between

individual results is merely a projection. Hence, we obtain that every FD-free-connex

CQ is in CD◦Lin. This is also true for CQs with disequalities. The positive results for

CDs use the relaxed reduction form in Lemma 5.26. This may cause duplicates, and so

we need to store the produced answers to ensure the uniqueness of printed answers and

maintain constant delay. This means that our positive results for CDs do not apply

also for CD◦Lin.

118



Chapter 6

Enumerating Tree

Decompositions

In the previous chapters, we proved the tractability of queries that can take a free-connex

form. In this chapter, we inspect what we can do when none of the methods from

the previous chapters can be applied. When the queries are neither naturally acyclic

nor acyclic via extensions based on dependencies or unions, we can decompose the

queries to reach an acyclic structure after a non-linear overhead. As this overhead

depends exponentially on the quality of the decomposition, we inspect only the task of

decomposition with the query as input. In particular, we no longer use data complexity,

since the data is not part of the problem we address. As finding the best decomposition

is NP-hard, we devise an anytime algorithm that enumerates decompositions efficiently

and allows us to stop when a decomposition found is deemed good enough. It turns out

that this problem coincides with the problem of enumerating minimal triangulations.

The complexity of the latter problem was an open problem that we address in this

chapter. Our suggested algorithm runs with the guarantee of incremental polynomial

time, and it can incorporate any method for finding a single tree decomposition. It

returns the result of this method as a first answer, and then repeatedly applies it (with

modified inputs) to try and improve upon the initial result.

This chapter contains joint work with Batya Kenig, Benny Kimelfeld, and Markus

Kröll. The findings of this chapter were published in The Symposium on Principles

of Database Systems (PODS) 2017 [CKK17], and in an extended version in Discrete

Applied Mathematics (DAM) in a special issue for Workshop on Enumeration Problems

and Applications (WEPA) 2018 [CKKK20].

Organization. In Section 6.1 we give preliminary definitions and notation, and recall

basic results from the literature. The algorithm is established in the next three sections

through a series of reductions culminating in the enumeration of maximal independent

sets over Succinct Graph Representations (SGRs). The SGR framework is presented

in Section 6.2, along with an enumeration algorithm for maximal independent sets. In
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Section 6.3 we prove that the graph of minimal separating sets satisfies the tractability

requirements needed for the SGR enumeration algorithm, and thereby establish an

algorithm for enumerating the minimal triangulations. We show how this algorithm can

enumerate the proper tree decompositions in Section 6.4. Then, an experimental study

is presented in Section 6.5.

6.1 Preliminaries

In this section we give some basic notation and terminology, and we recall basic theory

that we need in this chapter.

6.1.1 Graphs

The graphs in this work are undirected. For a graph g, the set of nodes is denoted by

V(g), and the set of edges (pairs {u, v} of distinct nodes) is denoted by E(g). Let U be

a set of nodes of a graph g. We denote by g|U the subgraph of g induced by U ; that is,

V(g|U ) = U and E(g|U ) = {{u, v} ∈ E(g) | {u, v} ⊆ U}. We denote by g \ U the graph

obtained from g by removing all the nodes in U (along with their incident edges), that

is, the graph g|V(g)\U .

Let g be a graph and U a set of nodes of g. We say that U is an independent set if

it does not contain both endpoints of any edge, and it is a maximal independent set if it

is an independent set and it is not strictly contained in any other independent set. We

denote by MaxInd(g) the set of all the maximal independent sets of g. We say that U

is a clique (of g) if every two nodes of U are connected by an edge, and it is a maximal

clique (of g) if it is a clique that is not strictly contained in any other clique. We denote

by MaxClq(g) the set of all the maximal cliques of g. The operation of saturating U (in

g) is that of connecting every non-adjacent pair of nodes in U by a new edge. Hence, if

h is obtained from g by saturating U , then U is a clique of h.

6.1.2 Minimal Separators

Let g be a graph, and let S be a subset of V(g). Let u and v be two nodes of g. We say

that S is a (u, v)-separator if u and v belong to distinct connected components of g \ S.

We say that S is a minimal (u, v)-separator if no strict subset of S is a (u, v)-separator.

We say that S is a minimal separator if there are two nodes u and v such that S is a

minimal (u, v)-separator. We denote by MinSep(g) the set of all the minimal separators

of g. We mention that the number of minimal separators (i.e., |MinSep(g)|) may be

exponential in the number of nodes (i.e., |V(g)|).
Let g be a graph, and let S and T be two minimal separators of g. We say that

S crosses T , in notation S \g T , if there are nodes u and v in T such that S is a

(u, v)-separator. If g is clear from the context, we may omit it and write simply S \T . It

is known that \ is a symmetric relation: if S crosses T then T crosses S [PS97, KKS97].
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Hence, if S \ T then we may also say that S and T are crossing. When S and T are

non-crossing, we also say that S and T are parallel.

6.1.3 Chordality and Triangulation

Let g be a graph. A chord of a cycle c of g is an edge e ∈ E(g) that connects two nodes

that are non-adjacent in c. We say that g is chordal if every cycle of length greater

than three has a chord. Whether a given graph is chordal can be decided in linear

time [TY84]. Dirac [Dir61] has shown a characterization of chordal graphs by means of

their minimal separators.

Theorem 6.1 ([Dir61]). A graph g is chordal if and only if every minimal separator

of g is a clique.

Rose [Ros70] has shown that a chordal graph g has fewer minimal separators than

nodes (i.e., if g is chordal then |MinSep(g)| < |V(g)|), and Kumar and Madhavan [KM98]

have shown that we can find all of these minimal separators in linear time.

Theorem 6.2 ([KM98]). Let g be a chordal graph. The set MinSep(g) can be computed

in linear time.

A triangulation of a graph g is a graph h such that V(g) = V(h), E(g) ⊆ E(h), and

h is chordal. The edges in E(h) \ E(g) are commonly referred to as fill edges. A minimal

triangulation of g is a triangulation h of g with the following property: for every graph

h′ with V(g) = V(h′), if E(g) ⊆ E(h′) ( E(h) then h′ is non-chordal (or in other words,

h′ is not a triangulation of g). In particular, if g is already chordal then g is the only

minimal triangulation of itself. We denote by MinTri(g) the set of all the minimal

triangulations of g.

6.1.4 Tree Decomposition

Let g be a graph. A tree decomposition d of g is a pair (t, β), where t is a tree and

β : V(t)→ 2V(g) is a function that maps every node of t into a set of nodes of g, so that

all of the following hold: (1) Nodes are covered: for every node u ∈ V(g) there is a node

v ∈ V(t) such that u ∈ β(v); (2) Edges are covered: for every edge e ∈ E(g) there is a

node v ∈ V(t) such that e ⊆ β(v); (3) Junction-tree (or running-intersection) property:

for all nodes u, v, w ∈ V(t), if v is on the path between u and w, then β(v) contains

β(u) ∩ β(w). Note that this is equivalent to the running-intersection property in the

definition of a join-tree.

Let g be a graph, and let d = (t, β) be a tree decomposition of g. For a node v

of t, the set β(v) is called a bag of d. We denote by bags(d) the set {β(v) | v ∈ V(t)},
and we denote by saturate(g, d) the graph obtained from g by saturating (i.e., adding

an edge between every pair of nodes in) every bag of d. Jordan [Jor02] has shown the

following characterization of chordal graphs by means of tree decompositions.
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Theorem 6.3 ([Jor02]). A graph g is chordal if and only if it has a tree decomposition

d such that every bag of d is a clique of g.

6.1.5 Enumerating the Minimal Triangulations

A common approach to establish enumeration with polynomial delay is via the technique

known as the branch-and-bound (or the flashlight) method [BEG04]. In this approach,

we find a condition ψ over the answers, and then recursively enumerate all of the answers

that satisfy ψ and all of the answers that violate ψ (i.e., satisfy ψ′ = ¬ψ). Hence, in

each recursive call, we need to enumerate all the answers that satisfy a conjunction

ψ1 ∧ · · · ∧ ψm of such conditions. For this approach to guarantee polynomial delay, the

depth of the recursion should be bounded by a polynomial in the size of the input.

Importantly, in each recursive call, we should be able to test whether there is at least

one answer that satisfies ψ1∧· · ·∧ψm. Then, in the leaves, we should be able to produce

the single answer that satisfies the given constraints.

In this chapter, we devise an algorithm for enumerating the minimal triangulations:

given g, enumerate MinTri(g). A branch-and-bound attempt to solve this problem

would be, say, to apply the conditions of inclusion and exclusion of fill edges. This

approach amounts to testing whether there is a minimal triangulation that contains

a given set of edges and excludes another set of edges. Unfortunately, it follows from

known hardness results of Golumbic, Kaplan and Shamir [GKS95] that this problem is

intractable, as the following proposition shows.

Proposition 6.4. The following decision problem is NP-complete: given g and two

sets I and X of node pairs, is there a minimal triangulation h of g such that I ⊆ E(h)

and E(h) ∩X = ∅?

Proof. Membership in NP is straightforward. To show hardness, we use a reduction from

the chordal sandwich problem. For a graph property Π, the sandwich problem for Π is

that of determining, given graphs g and g′′ with V(g) = V(g′′) and E(g) ⊆ E(g′′), where

there exists a graph g′ such that V(g′) = V(g), E(g) ⊆ E(g′) ⊆ E(g′′), and g′ satisfies Π.

This problem is NP-hard for various graph properties Π, including chordality [GKS95].

Now, given g and g′′, let X be the set of all the node pairs that are not edges of g′′.

The existence of g′ in the chordal sandwich problem is equivalent to the existence of a

(minimal) triangulation of g that excludes X.

Hence, we adopt a different approach to enumerating the minimal triangulations, as

we describe in the following section.

6.2 Maximal Independent Sets in Succinct Graphs

The main result of this chapter is an algorithm for enumerating the minimal trian-

gulations of a graph g. As we explain in the next section, this problem amounts to
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enumerating the maximal independent sets of a graph h. It is known that the maximal

independent sets of a graph can be enumerated with polynomial delay [JPY88]. However,

we cannot instantiate h, since the number of nodes of h can be exponential in the size of

g. Known algorithms for enumerating maximal independent sets cannot be applied to

solve our problem. Nevertheless, h possesses some tractability properties that, in fact,

allow us to efficiently enumerate the maximal independent sets of h. In this section, we

identify these properties within an abstract framework of succinct graph representations,

where a graph may be exponentially larger than its representation, and we have access

to the nodes and edges through efficient algorithms. Mainly, we devise an algorithm for

enumerating the maximal independent sets for such graphs.

6.2.1 Succinct Graph Representations

We begin with the formal definition of a succinct graph representation.

Definition 6.5 (SGR). A Succinct Graph Representation, or SGR for short, is a triple

(G, AV, AE) such that:

• G is a function that maps every input x, called an instance, to a graph G(x);

• AV is an enumeration algorithm that, given an instance x, enumerates the nodes

of G(x);

• AE is a decision algorithm that, given an instance x and nodes v and u of G(x),

determines whether v and u are connected by an edge in G(x).

An SGR (G, AV, AE) is said to be tractably accessible if both the following hold.

1. AV enumerates with polynomial delay.

2. AE terminates in polynomial time.

Here, both polynomials are with respect to |x| (the length of x). Observe that in a

tractably accessible SGR, the (representation) size of every node v of G(x) is polynomial

in that of x (since writing v is within the polynomial delay).

For efficient enumeration of MaxInd(G(x)), we need additional tractability conditions.

Definition 6.6 (Tractable Expansion). A tractably accessible SGR (G, AV, AE) is said

to have a tractable expansion if both of the following conditions hold.

1. There is a polynomial p such that |I| ≤ p(|x|) for all instances x and independent

sets I of G(x).

2. There is a polynomial-time algorithm that, given x and an independent set I

of G(x), either determines that I is maximal or returns a node v /∈ I such that

I ∪ {v} is independent.

Following is an example of an SGR that is central to this work.

6.2.2 The Separator Graph as an SGR

The separator graph of a graph g is the graph that has the set MinSep(g) of minimal

separators as its node set, and an edge between every two minimal separators that are
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crossing (i.e., S, T ∈ MinSep(g) such that S \ T ). Throughout this chapter we denote

by MSGraph the SGR (Gms, Ams
V , Ams

E ), where:

• Gms is a function mapping an input graph g (playing the role of x from Defini-

tion 6.5) to its separator graph.

• Ams
V is an enumeration algorithm that, given a graph g, enumerates its set

MinSep(g) of minimal separators. We can use here a variation of the algorithm of

Berry et al. [BBC99] that enumerates MinSep(g) with polynomial delay, as we

describe later in Section 6.3.2.

• Ams
E is an algorithm that, given a graph g and two minimal separators S and T ,

determines whether S \ T efficiently (e.g., by removing S and testing whether T is

split along multiple connected components).

In particular, MSGraph is a tractably accessible SGR. We will show later (Theorem 6.20)

that MSGraph also has a tractable expansion.

6.2.3 Enumerating Maximal Independent Sets in SGRs

Our main result for this section is the following.

Theorem 6.7. Let (G, AV, AE) be a tractably accessible SGR with a tractable expansion.

There is an algorithm that, given an instance x, enumerates the set MaxInd(G(x)) in

incremental polynomial time.

The proof is via the algorithm EnumMIS that is depicted in Algorithm 6.1. This

algorithm is an adaptation of the algorithm for computing full disjunctions in databases

[CFK+06] that generalizes the problem of enumerating maximal cliques (or maximal

independent sets). In turn, that algorithm was based on an improvement of the algorithm

of Lawler et al. [LLK80] for generating the maximal independent sets in polynomial total

time, and all rely on the general idea of reducing the problem to the input-restricted

problem that was later introduced by Cohen et al. [CKS08] for enumerating maximal

node sets that satisfy a hereditary property.

The underlying idea of that algorithm is to construct a graph over the space of the

solutions (maximal independent sets), and traverse the graph in a depth-first-search

manner. In the case of maximal independent sets, there is an edge from J to K if K is

obtained from J by adding a new node v, removing the neighbours of v, and greedily

extending to a maximal independent set.

In this section, we describe the algorithm and prove its correctness and efficiency.

In the remainder of this section, we fix a tractably accessible SGR (G, AV, AE) with

tractable expansion, and an input instance x. Our goal is to enumerate MaxInd(G(x)).

6.2.4 Algorithm Description

As explained earlier, the algorithm extends every maximal independent set J that it

generates in the direction of every node v that it generates. By extending J in the
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Algorithm 6.1 Enumerating maximal independent sets for an SGR

1: procedure EnumMIS((G, AV, AE), x)
2: J :− Extend(x, ∅)
3: print J
4: Q :− {J}
5: P :− ∅
6: V :− ∅
7: iterator :− AV(x)
8: while Q 6= ∅ do
9: J :− Q.pop()

10: P.push(J)
11: for all v ∈ V do
12: Jv :− {v} ∪ {u ∈ J | ¬AE(x, v, u)}
13: K :− Extend(x, Jv)
14: if K /∈ Q ∪ P then
15: print K
16: Q :− Q ∪ {K}
17: while Q = ∅ and iterator.hasNext() do
18: v :− iterator.next()
19: V :− V ∪ {v}
20: for all J ′ ∈ P do
21: J ′v :− {v} ∪ {u ∈ J ′ | ¬AE(x, v, u)}
22: K :− Extend(x, J ′v)
23: if K /∈ Q ∪ P then
24: print K
25: Q :− Q ∪ {K}

direction of v we mean producing an arbitrary maximal independent set K that contains

v and all nodes in J that are non-neighbors of v. As long as there are unprocessed

sets, they are extended in the direction of all previously generated nodes. When no

unprocessed sets are left, additional nodes are generated, and the previously processed

sets are extended in the direction of the new nodes. Put differently, our algorithm

adapts the traversal approach by restricting the steps to the solutions that are obtained

by extending in the direction of the nodes v that have been produced until that point of

time; when a new node v is generated, we revisit the past solutions and take the steps

implied by v.

The algorithm maintains two collections, Q and P, for storing answers (which are

maximal independent sets of the graph G(x)). The algorithm inserts answers into Q,

and repeatedly removes (or pops) an answer from Q and processes that answer (while

possibly inserting new answers into Q), until Q is empty. The set P stores the answers

that have already been removed from Q and processed. Importantly, both collections

feature membership testing, element removal and element insertion with a number of

comparisons logarithmic in their cardinality (i.e., the number of answers they hold at

the time of the operation; this can be achieved for example by using balanced binary
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search trees). In addition, the algorithm maintains a collection V of the nodes of G(x)

generated thus far. The collection Q is initialized with a single result (which is printed

after being generated), which is an arbitrary maximal independent set. This result is

obtained through the procedure Extend(x, I) that extends a given independent set I

into a maximal one. Note that this procedure can be implemented in polynomial time,

since (G, AV, AE) has a tractable expansion. The sets P and V are initialized empty.

The algorithm accesses the nodes of G(x) through an iterator object that is obtained

by executing AV(x), and features two polynomial-time operations:

• hasNext() determines whether there are additional nodes of G(x) to enumerate.

• next() returns the next node in the iteration.

The algorithm applies the iteration of line 8 until Q becomes empty, and then terminates.

In every iteration, the algorithm pops an element from Q, stores it in P (lines 9–10),

and then processes it. The algorithm iterates through the nodes in V , and for each node

v it applies (in lines 12–16) what we call extension of J in the direction of v:

1. Generate the set Jv that consists of v and all the nodes in J that are non-neighbors

of v, using the algorithm AE for testing adjacency;

2. Extend Jv into an arbitrary maximal independent set K using Extend(x, Jv);

3. If K is in neither Q nor P (meaning it was not printed before), then print K and

add it to Q.

Note that Jv is an independent set, so it is possible to invoke Extend(x, Jv) with Jv.

Up to this point, the algorithm is very similar to the algorithm of Cohen et

al. [CFK+06] for computing full disjunctions, except that V does not hold all nodes

but only the nodes generated so far. The twist (and the source of extra challenge

in proving correctness and efficiency) is in lines 17–25, where we generate additional

nodes and compensate for them being missing in the previous iterations. In these lines,

the algorithm tests whether it is the case that Q is empty and the node iterator has

additional nodes to process (line 17). While this is the case, the algorithm repeats the

following procedure (lines 18–25): generate the next node using the iterator of AV(x),

add it to V, and extend every previously processed result (i.e., the results in P) in the

direction of the newly generated node v (as previously described).

6.2.5 Correctness and Efficiency

The following lemma states the correctness of the algorithm: the algorithm enumerates

every element in MaxInd(G(x)), only elements in MaxInd(G(x)), and every element is

printed exactly once.

Lemma 6.8. EnumMIS(x) enumerates MaxInd(G(x)).

Proof. The algorithm prints only elements that are created by invoking the procedure

Extend. Therefore, the algorithm prints only elements in MaxInd(G(x)). The tests of

lines 14 and 23 ensure that whenever an element is printed, this element has not been
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seen before. Hence, no element is printed more than once. It is left to prove that every

maximal independent set of G(x) is printed by the algorithm.

Observe the following. When the algorithm terminates we have Q = ∅. There-

fore, in the previous iteration the loop of line 17 could only have terminated due to

iterator.hasNext() returning false. Therefore, upon termination V = V(G(g)).

Suppose, by way of contradiction, that there is some maximal independent set H

that is not printed by the algorithm. Let J be a maximal independent set of G(x),

among all the printed ones, that contains a maximal number of elements from H. The

set J must exist, since the algorithm prints at least one maximal independent set. Let

Hm be the intersection H ∩ J . Since H 6= Hm (or else H is not maximal), there is at

least one node in H \ J ; let v be such a node.

At this point we established that before the algorithm terminates, (a) the node v

was generated, and (b) J was printed. We now branch into two cases, as follows.

1. The set J was inserted into P before the node v was generated. Immediately

after v is generated (in line 18), the set Jv = {v} ∪ {u ∈ J | ¬AE(x, v, u)} will

be constructed (in line 21) and expanded to a maximal independent set K that

contains Jv.

2. The node v was generated before J was inserted into P. At the iteration when J

is inserted into P , we have v ∈ V , and so the set Jv = {v}∪{u ∈ J | ¬AE(x, v, u)}
will be constructed (in line 12) and expanded to a maximal independent set K

that contains Jv.

So, we have established that before the algorithm terminates, the set Jv is generated

and expanded to a maximal independent set K that contains Jv. Furthermore, Hm ∪
{v} ⊆ Jv (since Hm ⊆ J , and does not contain any neighbor of v), and therefore

Hm ∪ {v} ⊆ K. According to the algorithm, one of the following options must hold: (1)

K is inserted into Q, (2) K is already in Q (3) K was in Q in the past and is now in P .

Since the algorithm prints every maximal independent set that is inserted into Q, we

get a contradiction to the maximality of Hm.

We now prove that the algorithm EnumMIS enumerates with incremental polynomial

time. We do so in two steps. We first define an algorithm that is similar to EnumMIS,

but with a small twist that makes it easier to prove incremental polynomial time. Then,

we prove a general result that will imply that, if the new algorithm enumerates in

incremental polynomial time then so does EnumMIS.

The new algorithm is similar to EnumMIS, except that each of the print commands

(lines 3, 15 and 24) is replaced with an operation that takes the time of the printing, but is

actually void (e.g., printing to /dev/null in Unix). Instead, each maximal independent

set is printed immediately after being removed from Q (line 9). Hence, answers are held

until removed from Q. We refer to the resulting algorithm as EnumMISHold. For

theory purposes, it would have been enough to discuss only EnumMISHold, which

is easier to analyze. However, since delaying the results is not required to obtain the
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theoretical guarantees, we also discuss EnumMIS where we print the results as soon

as we have them. Next, we prove that EnumMISHold enumerates in incremental

polynomial time. Observe that to bound the delay EnumMISHold, we only need to

bound the time between two executions of line 9 of EnumMIS.

Lemma 6.9. EnumMISHold(x) enumerates with incremental polynomial time.

Proof. We begin by showing that the size of the node set V is polynomial in the size of

the printed result set P . Whenever a new node v is inserted into V (line 19), the set Q
is empty. The following calls to Extend (line 22) will generate maximal independent

sets containing v. Each of these maximal independent sets is either already in P, or

it is inserted into Q (line 25). Therefore, at the end of the iteration of the main loop

in which v was inserted into V, all maximal independent sets in Q contain v. In the

next iteration of the main loop, if such an iteration exists, one of these newly generated

independent sets will be printed and inserted into P (line 10). That is, at the beginning

of every iteration of the algorithm (specifically, line 11), every node v ∈ V belongs to

some maximal independent set that has already been printed (and thus part of P).

Since we assume tractable expansion, each independent set in P contains at most p(|x|)
nodes, and we can conclude that |V| ≤ p(|x|) · |P|.

We now bound the time between two executions of line 9 of EnumMIS. Line 10

takes polynomial time in |x| (since there are at most exponentially many independent

sets, (G, AV, AE) has a tractable expansion, and operations on P require a logarithmic

number of comparisons in the cardinality). The number of iterations of line 11 is at

most the size of V , which is polynomial in the number of answers printed so far (due to

the above observation). Each operation in that iteration takes time polynomial in |x|.
The loop of line 17 repeats (at most) until a node that belongs to none of the printed

answers is generated. Hence, the observation that this number is polynomial in the size

of the output, along with the tractable expansion, again implies that the number of

times we iterate is polynomial in the number of answers printed so far. The loop of

line 20 repeats at most as many times as the number of answers in P, and these were

printed before. Besides the loops, each of lines 18–25 takes polynomial time in |x|.

Lemma 6.9 shows that EnumMISHold enumerates with incremental polynomial

time. Next, we show the same for EnumMIS. The key point is that every answer is

printed in EnumMIS no later than it is printed in EnumMISHold. Note that this

holds even though the two algorithms do not necessarily enumerate in the same order

(as we make no assumptions about the order of removal in Q), since we assume that

EnumMISHold spends on void the printing time of EnumMIS. We will prove that

this suffices to conclude that if EnumMISHold enumerates in incremental polynomial

time, then so does EnumMIS. We prove here a general result. Let P be an enumeration

problem, and let A be a solver for P . For input x and answer y ∈ P (x), we denote by

timeA,x(y) the time in which y is printed. We prove the following theorem.
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Theorem 6.10. Let P be an enumeration problem, and let A and B be two solvers for

P . Suppose that for all instances x and for all answers y ∈ P (x) we have timeA,x(y) ≤
timeB,x(y). If B enumerates in incremental polynomial time, then so does A.

Theorem 6.10 is not a vacuous statement, since the order of results may differ between

A and B. Furthermore, the corollary no longer holds when substituting “incremental

polynomial time” with “polynomial delay.” For example, imagine two algorithms that

print all subsets of an input set. The first prints a new answer after every two time

ticks, while the second prints them after every single time tick, except for the last

answer which is printed at the same time in both algorithms. The first algorithm meets

the guarantee of polynomial delay, and even though the second algorithm prints every

answer no later than the first, the second algorithm does not enumerate in polynomial

delay as its delay before the last answer is exponential.

Let P be an enumeration problem, let A be a solver for P , and let x be input for A.

If τ is a time tick during the execution of A(x), then we denote by outA,x(τ) the answers

y ∈ P (x) that have been printed before time τ is reached. We have the following lemma.

Lemma 6.11. Let P be an enumeration problem, and A a solver for P . The following

are equivalent.

1. A enumerates in incremental polynomial time.

2. There is a polynomial p such that for all input x and time tick τ it holds that

p(|x|+ |outA,x(τ)|) > τ .

Proof. Denote the time of the Nth result by tN .

1⇒ 2 If A enumerates in incremental polynomial time, there exists a polynomial p1

such that tN+1 − tN ≤ p1(|x|+ N). Without loss of generality, we assume that p1 is

monotone (as every polynomial is upper bounded by some monotone polynomial, and

we can replace p1 with such polynomial). We get the following on the printing time of

the Nth result.

tN =
N∑
i=1

ti − ti−1 ≤
N∑
i=1

p1(|x|+ i− 1) ≤ N · p1(|x|+N − 1)

In this case we get that for any time τ there exists a polynomial p2 such that the

following holds.

τ < t|outA,x(τ)|+1 ≤ (|outA,x(τ)|+ 1) · p1(|x|+ |outA,x(τ)|) ≤ p2(|x|+ |outA,x(τ)|)

2⇒ 1 Assume now that p3(|x|+ |outA,x(τ)|) > τ for any time τ . Consider the delay

after the Nth answer.

tN+1 − tN ≤ tN+1 < p3(|x|+N + 1)

This shows that there exists a polynomial p4 such that tN+1−tN < p4(|x|+N), meaning

that A enumerates in incremental polynomial time.

We can now prove Theorem 6.10.
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Proof. Using the characterization of Lemma 6.11, let p be a polynomial such that for

all x and τ we have p(|x|+ |outB,x(τ)|) > τ . The condition of the theorem implies that

at every time tick τ , the set of answers printed by B is a subset of the set of answers

printed by A, and therefore, |outA,x(τ)| ≥ |outB,x(τ)|. Again since we can assume

monotonicity, we conclude that p(|x|+ |outA,x(τ)|) > τ as well. We use Lemma 6.11 to

conclude that A enumerates in incremental polynomial time.

Using the algorithms EnumMIS and EnumMISHold as A and B in Theorem 6.10,

respectively, the combination with Lemma 6.9 implies that EnumMIS enumerates in

incremental polynomial time, as claimed.

6.2.6 Tightness of the Algorithm

In what follows, we show that the time bounds that EnumMIS achieves are tight since

it is not possible to solve the same problem with polynomial delay under the SETH

hypothesis (which we describe next).

We recall that k-SAT is the satisfiability problem over n variables, where every clause

contains at most k literals. The SETH hypothesis states that there is no algorithm for

solving k-SAT in O(2(1−ε)n) time for a fixed ε and all k.

Definition 6.12 (The Strong Exponential Time Hypothesis). For every ε > 0 there

exists a k such that k-SAT requires time larger than 2(1−ε)n where n is the number of

variables.

Let (G, AV , AE) be the tractable expansion of a tractably accessible SGR. We denote by

SMIS(G,AV,AE) the following enumeration problem: Given an instance x, enumerate

all MaxInd(G(x)).

Proposition 6.13. There exists some tractably accessible SGR with a tractable expan-

sion (G, AV , AE), such that SMIS(G,AV,AE) cannot be enumerated with a polynomial

delay, assuming the SETH.

Proof. Let k ≥ 3, and let φ be an instance of k-SAT with var(φ) = {x1, . . . , xn} (for

readability, we assume that n ≥ 2 is even). We will show that a polynomial delay

algorithm for enumerating MaxInd(G(x)) will decide the satisfiability of φ within time

2
n
2 · poly(|φ|). This is true for any choice of k, which is not possible assuming the SETH.

We first describe the SGR (G, AV , AE). For any string x that is not a k-SAT formula,

G(x) = ∅. Otherwise, given a k-SAT instance φ, we define G(x) as follows: The set of

vertices represents all possible truth assignments on n
2 variables twice, with two additional

nodes ⊥A and ⊥B. Intuitively, VA corresponds to all possible truth assignments on

the variables x1, . . . , xn
2
, and VB corresponds to all possible truth assignments on the
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remaining variables xn
2

+1, . . . , xn. That is,

VA = {A} × {0, 1}
n
2

VB = {B} × {0, 1}
n
2

V (G(φ)) = VA ∪ VB ∪ {⊥A} ∪ {⊥B}.
To define the set of edges, we first start with edges between the set VA and VB.

There is an edge (u, v) for u ∈ VA, v ∈ VB if and only if u and v together encode a truth

assignment that does not satisfy φ. Moreover, we also add all edges between nodes in

VA, between nodes in VB and certain connections to the nodes ⊥A and ⊥B as follows:

Eunsat ={{u, v}|∃a1, . . . , an ∈ {0, 1} s.t. u = (A, a1, . . . , an
2
) ∈ VA,

v = (B, an
2

+1, . . . , an) ∈ VB and φ(a1, . . . , an) = false}.

E(G(φ)) =Eunsat ∪ {⊥A,⊥B} ∪ {{u, v} | u, v ∈ VA} ∪ {{u, v} | u, v ∈ VB}

∪ {{u,⊥A} | u ∈ VA} ∪ {{u,⊥B} | u ∈ VB}
We first note that this SGR is tractably accessible. Indeed, the set of nodes can be

enumerated with a polynomial (even constant) delay, and for any u, v ∈ G(φ), we can

check whether {u, v} ∈ E(G(φ)) in polynomial time, since evaluation of any k-SAT

formula can be done within polynomial (or even linear) time. To show that this SGR

also has a tractable expansion, we note that the set of maximal independent sets of

G(φ) is given as the union of the sets IA, IB and Isat with

IA = {{u,⊥B} | u ∈ VA}, IB = {{u,⊥A} | u ∈ VB} and

Isat = {{u, v}|∃a1, . . . , an ∈ {0, 1} s.t. u = (A, a1, . . . , an
2
) ∈ VA,

v = (B, an
2

+1, . . . , an) ∈ VB and φ(a1, . . . , an) = true}.

Every maximal independent set of G(φ) is of size 2, satisfying the first condition of a

tractable expansion. For the second condition, we note that every subset I of V (G)

of size one can be extended trivially to a maximal independent set (by adding either

⊥A, ⊥B, or in case that I ⊂ {⊥A,⊥B} some arbitrary element from VA or VB), and

for any subset of size two, we can check whether I is (maximally) independent within

polynomial time.

Note that φ is satisfiable if and only if MaxInd(G(x)) contains more than the sets

IA and IB. Assume that we can enumerate MaxInd(G(x)) with a polynomial delay. We

can output 2 · 2
n
2 many solutions within time 2

n
2 · poly(|φ|), meaning that we can decide

whether there are more than 2 · 2
n
2 many maximal independent sets of G(φ) within in

the same time bound. Since φ is satisfiable iff G(φ) has at least 2 · 2
n
2 + 1 maximal

independent sets, we are done.

6.2.7 Note on Space Usage

We conclude Section 6.2 with a discussion on the space usage. Note that our algorithm

may reach an exponential space as it relies on remembering all past answers to avoid the
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production of duplicates. This cost is already incurred in the enumerators of maximal

independent sets that form the basis of our algorithm [CFK+06, CKS08, LLK80].

However, several algorithms for enumerating maximal independent sets (and more

generally maximal sets w.r.t. different properties) guarantee both polynomial delay

and polynomial space, including the reverse search [AF96], the algorithm of Conte et

al. [CGM+17], and the proximity search [CU19]. However, it is not clear to us how these

algorithms can be adapted to enumerating the maximal independent sets of an SGR in

a manner that limits the space, given that the set of nodes is not known upfront (and in

light of Proposition 6.13). Moreover, note that the exponential space of our algorithm

is also required for storing the (possibly exponential number of) past generated nodes

of the SGR.

A natural question then remains open: can Theorem 6.7 be improved to require only

polynomial space (at least when ignoring the space used by invoking the SGR functions)?

Particularly, we leave open the question of whether and how the aforementioned

polynomial-space algorithms can be adapted to enumerating the maximal independent

sets of an SGR, and whether we can avoid storing all produced nodes. It appears

that further assumptions on the SGR are required to this aim, and establishing these

assumptions is left as a future direction.

6.3 Minimal Triangulations

In Section 6.2.2 we introduced MSGraph and claimed that it is an SGR. In this section,

we use known results to reduce the problem of enumerating the minimal triangulations of

a graph to the problem of enumerating the maximal independent sets for MSGraph. We

will describe how to enumerate the nodes of MSGraph with polynomial delay, concluding

that it is in fact an SGR. We will further show that MSGraph has a tractable expansion

(Definition 6.6), and therefore Theorem 6.7 can be applied to conclude that the minimal

triangulations can be enumerated in incremental polynomial time.

6.3.1 Reduction

We use the following notation. Let g be a graph. We denote by ClqMinSep(g) the set of

minimal separators S of g, such that S is a clique of g. Let ϕ be a subset of MinSep(g).

We denote by g[ϕ] the graph that results from saturating the minimal separators in ϕ.

Parra and Scheffler [PS97] have shown the following connection between minimal

triangulations and maximal sets of pairwise-parallel minimal separators (that is, every

two minimal separators in the set are non-crossing).

Theorem 6.14 (Parra and Scheffler [PS97]). Let g be a graph.

1. If ϕ is a maximal set of pairwise-parallel minimal separators of g, then g[ϕ] is a

minimal triangulation of g, and MinSep(g[ϕ]) = ϕ.
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2. If h is a minimal triangulation of g, then the set ϕ = MinSep(h) is a maximal set

of pairwise-parallel minimal separators in g, and h = g[ϕ].

Theorem 6.14, combined with Theorem 6.2, gives the desired reduction in the

following corollary. Recall that the graph Gms(g) is defined in Section 6.2.2, as part of

the SGR MSGraph = (Gms, Ams
V , Ams

E ).

Corollary 6.15. For a graph g, there is a polynomial-time-computable bijection between

the following two sets:

• MaxInd(Gms(g)), that is, the set of all maximal sets of pairwise-parallel minimal

separators of g.

• MinTri(g), that is, the set of all minimal triangulations of g.

Hence, it suffices to prove that MSGraph has a tractable expansion, as we do next.

6.3.2 Enumerating Minimal Separators

We now describe a variation of the algorithm of Berry et al. [BBC99] that, given a graph

g, enumerates its set MinSep(g) of minimal separators. Their algorithm enumerates with

polynomial total time, and with a simple change (that we explain next) can enumerate

with polynomial delay. Our variation is depicted in Algorithm 6.2. There, for v ∈ V(g)

we denote by N(v) the set of neighbors of v. For U ⊆ V(g) we denote by N(U) the set

of neighbors of nodes in U , excluding the nodes of U themselves; that is,

N(U)
def
==

( ⋃
v∈U

N(v)
)
\ U .

We also denote by C (U) the set of connected components of the graph g \U (the graph

obtained from g by removing all the nodes of U).

Algorithm 6.2 Enumerating minimal separators with polynomial delay

1: procedure PDelayAllMinSep(g)
2: Q :− ∅
3: P :− ∅
4: for all v ∈ V(g) do
5: for all C ∈ C ({v} ∪N(v)) do
6: Q :− Q ∪ {N(C)}
7: while Q 6= ∅ do
8: S :− Q.pop()
9: for all x ∈ S do

10: S′ :− {N(C) | C ∈ C (S ∪N(x))}
11: if S′ /∈ P then
12: Q :− Q ∪ {S′}
13: P :− P ∪ {S}
14: print S

The algorithm remains intrinsically the same as that of Berry et al. [BBC99]. Minimal

separators are considered as neighborhoods of connected components. The algorithm
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finds minimal separators contained in a set U ⊆ V(g) by taking the neighborhoods of the

connected components of g \ U , that is, N(C) for all C ∈ C (U). Initially, the minimal

separators that are contained in the neighborhoods of single nodes are generated (lines

3–5). Then, every previously generated minimal separator S is processed to produce

more minimal separators that are close to S (lines 7–12). For every node v in the

minimal separator S, it produces minimal separators that are contained in S ∪N(v).

Our modification is in the data structures and the time of printing answers. In

Algorithm 6.2, Q and P play the role of S \T and T of the original algorithm [BBC99],

respectively. There, S holds all minimal separators generated, and T is a subset that

holds the separators that were processed. The easy access to the separators yet to be

processed (i.e. S \T ), along with printing answers when processed (in line 13, rather

then when revealed in line 11), provides the polynomial delay. Correctness is derived

directly by the correctness of the original algorithm, and the polynomial delay can be

easily verified. In particular, the time between two consecutive results is O(|V(g)|3).

6.3.3 Tractable Expansion

Recall that Rose [Ros70] proved that a chordal graph has fewer minimal separators than

nodes. Combined with this result, Theorem 6.14 gives the first of the two conditions of

Definition 6.6.

Corollary 6.16. Let g be a graph. If I is a (maximal) independent set of Gms(g), then

|I| < V(g).

Proof. Suppose that I is a maximal set of pairwise-parallel minimal separators of g. Then

by Theorem 6.14, h = g[I] is a minimal triangulation of g, and MinSep(h) = I. The graph

h is chordal, hence from Rose [Ros70] we get that |MinSep(h)| < |V (h)| = |V (g)|.

We now turn to proving the second condition of Definition 6.6. We do so by describing

a general procedure for extending a set of pairwise-parallel minimal separators of a

graph g to a maximal such set. Algorithm Extend of Algorithm 6.3 can apply any

known polynomial time triangulation heuristic, referred to as Triangulate, as a black

box. It uses the following procedures as subroutines.

• Saturate(g, S) receives a graph g and a set S ⊆ V (g) of vertices, and saturates

S (i.e., modifies g such that S becomes a clique).

• Triangulate(g) receives a graph g and returns a (not necessarily minimal)

triangulation g′ of g. We assume that this procedure runs in polynomial time.

(For example, a naive implementation would be to add every possible edge; later

we discuss smarter alternatives.)

• MinTriSandwich(g, g′) receives a graph g and a triangulation g′ of g, and returns

a minimal triangulation of g. Using one of the known algorithms [Dah97, Pey01,

BHT01], this procedure runs in time that is polynomial in the size of the graph.
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Note that this is different than the task described in Proposition 6.4 since here g′

is necessarily chordal.

• ExtractMinSeps(h) receives a chordal graph h and returns its set of minimal

separators. Using the algorithm of Kumar [KM98], the execution time of this

procedure is linear in h.

Extend takes as input a graph g and a set ϕ of pairwise-parallel minimal separators.

It then proceeds by saturating the separators in ϕ, resulting in g[ϕ]. At this stage it

passes g[ϕ] to the triangulation heuristic Triangulate. We note that Triangulate

does not have to produce a minimal triangulation. This is important since it allows

us to incorporate any method for triangulation or tree decomposition. (We discuss in

detail the translation between triangulations and tree decompositions in Section 6.4.)

The problem of transforming a non-minimal triangulation into a minimal one is

called the minimal triangulation sandwich problem [Heg06]. Various polynomial-time

algorithms for this problem exist [Dah97, Pey01], and these were reported to perform

well in practice [BHT01].

At this stage we have a minimal triangulation h of g[ϕ]. Theorem 6.17 shows that

h is also a minimal triangulation of g. Lemma 6.18 shows that the set of minimal

separators of h contains ϕ, which is essential as we need to extend ϕ. Finally, we can

apply the algorithm of Kumar [KM98] to extract the minimal separators of the (chordal)

graph h in linear time.

Algorithm 6.3 Extending a set of pairwise-parallel minimal separators

procedure Extend(g,ϕ)
gt :− Triangulate(g[ϕ])
h :−MinTriSandwich(g[ϕ], gt)
return ExtractMinSeps(h)

To prove correctness of the algorithm Extend of Algorithm 6.3, we need the

following result by Heggernes [Heg06].

Theorem 6.17 (Heggernes [Heg06]). Given a graph g, let ϕ be an arbitrary set of

pairwise-parallel minimal separators of g. Obtain the graph g[ϕ] by saturating each

separator in ϕ. The following hold:

1. ϕ ⊆ ClqMinSep(g[ϕ]), that is, ϕ consists of clique minimal separators of g[ϕ].

2. ClqMinSep(g) ⊆ MinSep(g[ϕ]); that is, every clique minimal separator of g is a

(clique) minimal separator of g[ϕ].

3. Every minimal triangulation of g[ϕ] is a minimal triangulation of g.

The next lemma builds on Theorems 6.14 and 6.17.

Lemma 6.18. Let g be a graph, and ϕ a set of pairwise-parallel minimal separators of

g. Let h be a minimal triangulation of g[ϕ]. Then ϕ ⊆ MinSep(h).
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Proof. By Part 1 of Theorem 6.17 we have that ϕ ⊆ ClqMinSep(g[ϕ]). Since h is a

minimal triangulation of g[ϕ] then by Part 2 of Theorem 6.14, h is the result of saturating

a maximal set, say ϕ′, of pairwise-parallel minimal separators of g[ϕ]. Therefore, by

Part 2 of Theorem 6.17 we have ClqMinSep(g[ϕ]) ⊆ MinSep(h). This implies that

ϕ ⊆ MinSep(h), as claimed.

We then conclude the correctness of the algorithm.

Lemma 6.19. Let ϕ be a set of pairwise-parallel minimal separators of a graph g.

Extend(g, ϕ) returns a maximal set I of pairwise-parallel minimal separators of g such

that ϕ ⊆ I. Furthermore, the algorithm terminates in polynomial time.

Proof. Assuming correctness of procedures Triangulate, and MinTriSandwich, the

graph h is a minimal triangulation of g[ϕ]. By Part 3 of Theorem 6.17, we have that

h is a minimal triangulation of g. Consequently, from Part 2 of Theorem 6.14 we get

that MinSep(h) = I is a maximal set of pairwise-parallel minimal separators of g. By

Lemma 6.18 it holds that ϕ ⊆ MinSep(h), making I an extension of ϕ. All of the

procedures in Algorithm 6.3 run in time that is polynomial in the size of the graph

making it polynomial as well.

From Corollary 6.16 and Lemma 6.19 we get the main result of this part.

Theorem 6.20. The SGR MSGraph has a tractable expansion of independent sets.

This theorem allows us to establish the main result of this section.

6.3.4 Main Result

From Theorems 6.20 and 6.7 we conclude that it is possible to enumerate the maximal

independent sets of MSGraph in incremental polynomial time. Applying the bijection of

Corollary 6.15, we get the main result of this section.

Corollary 6.21. Given a graph, the minimal triangulations can be enumerated in

incremental polynomial time.

In the next section, we will use this result for enumerating tree decompositions.

6.4 Proper Tree Decompositions

In this section, we define the notion of a proper tree decomposition, which is essentially

a tree decomposition that is, intuitively, not deemed redundant due to another tree

decomposition. Our ultimate goal is to enumerate only the proper tree decompositions,

and we will show that this translates to enumerating the minimal triangulations.
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Figure 6.1: Examples of proper (d1) and improper (d2, d3) decompositions of a graph g.

6.4.1 Proper Tree Decompositions

Let d1 and d2 be two tree decompositions of a graph g. We say that d1 and d2 are bag

equivalent, denoted d1≡bd2, if bags(d1) = bags(d2). We denote by d1 v d2 the fact that

for every bag b1 ∈ bags(d1) there exists a bag b2 ∈ bags(d2) such that b1 ⊆ b2.

Let g be a graph, and let d and d′ be tree decompositions of g. We say that d′

strictly subsumes d if d′ v d and bags(d) 6⊆ bags(d′) in multiset notation (i.e., some bag

appears in d more times than it appears in d′). A tree decomposition is proper if it is

not strictly subsumed by any tree decomposition, and it is improper otherwise.

Figure 6.1 shows examples of proper and improper tree decompositions. It can be

shown that d1 is proper (e.g., since every clique of g is contained in some bag of d, as

we prove in Proposition 6.24). But d2 is not proper, since it is subsumed by d1; that is,

every bag of d1 is contained in some bag of d2, but the bag {1, 2, 3, 4} is not a bag of d1.

For the same reason, d2 is subsumed also by d3. Finally, d3 is subsumed by d1 since

every bag of d1 is a bag of d3, but the bag {3, 4} is not a bag of d1.

6.4.2 Enumeration

The main result of this section is the following, showing that enumerating the proper

tree decompositions reduces to enumerating the minimal triangulations.

Theorem 6.22. Let g be a graph. There is a bijection M between MinTri(g) and the

equivalence classes of ≡b over the proper tree decompositions of g. Moreover, given a

minimal triangulation h of g, the proper tree decompositions in the class M(h) can be

enumerated with polynomial delay.

Combined with Corollary 6.21, we get the following.

Corollary 6.23. The set of proper tree decompositions of a given graph can be enu-

merated in incremental polynomial time.

Next, we discuss the proof of Theorem 6.22, and in particular show how M is defined.

We first need some propositions. The following proposition is a folklore, and it is using

the fact that every collection of subtrees of a tree satisfies the Helly property [Gol80].

Proposition 6.24. If d is a tree decomposition of a graph g, then every clique of g is

contained in some bag of d.
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Figure 6.2: A strictly subsuming tree decomposition in the proof of Proposition 6.25.

Proof. We use the fact that the junction-tree property of a tree decomposition is

equivalent to the property that for every node v of the graph, the bags of the tree

decomposition that contain v form a (connected) subtree. Denote d = (t, β) and let C

be a clique of g. Every node v in C defines a subtree of t that is induced by the bags

that contain v. Since d covers the edges of g, every two nodes in C must share some bag

in d, and hence, their subtrees must share a vertex. It is known that every collection

of subtrees of a tree satisfies the Helly property [Gol80]: if every two subtrees share a

vertex, then there exists a vertex that is shared by all the subtrees. In particular, there

exists a vertex in d common to all of these subtrees; this shared node corresponds to a

bag that contains C.

The following proposition states that in a proper tree decomposition, there is no

containment among bags.

Proposition 6.25. If d is a proper tree decomposition of a graph g, then bags(d) is an

antichain w.r.t. set inclusion (that is, no bag contains another).

Proof. We need to show that a proper tree decomposition cannot have two bags with

one contained in the other. Assume, by way of contradiction, that d is a proper tree

decomposition of g with two bags B,C ∈ bags(d) where B ⊆ C. Let A be the second

bag in the path from B to C. Since d is a tree decomposition and A is on the path from

B to C, we get that B = B ∩ C ⊆ A.

Define d′ to be the graph obtained from d by removing B and connecting A to

all other neighbors of B, as illustrated in Figure 6.2. We will show that d′ is a tree

decomposition for g. The first two properties of the tree decomposition still hold because

A contains B. Consider the path between two bags α and β of d′. If the path between

them is the same as in d, the third property still holds. If it changed, then the path

used to go through B, and the only new bag that may appear in this path is A. In

this case, α ∩ β ⊆ B ⊆ A, and the third property holds as well. We have found a

tree decomposition d′ for g that strictly subsumes d, hence d is improper, and this is a

contradiction.

From Theorem 6.3, the following easily follows.

Proposition 6.26. If d is a tree decomposition of a graph g, then saturate(g, d) is a

triangulation of g.
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Proof. According to the definitions, d is a tree decomposition of saturate(g, d). Hence,

since every bag of d is a clique of saturate(g, d), it follows from Theorem 6.3 that

saturate(g, d) is chordal.

The definition of M is based on Lemma 6.27, stating that a chordal graph g has a

single proper tree decomposition, up to the equivalence ≡b, with the set of bags being

precisely the set of maximal cliques.

Lemma 6.27. If g is a chordal graph and d is a proper tree decomposition of g, then

bags(d) = MaxClq(g).

Proof. According to Proposition 6.24, every clique of g is contained in some bag of d,

and according to Theorem 6.3, g has some tree decomposition, say d′, where all the

bags are cliques of g. So we have that d′ v d. If bags(d) 6⊆ bags(d′), then d′ strictly

subsumes d, in contradiction to the fact that d is proper. Hence bags(d) ⊆ bags(d′),

meaning that the bags of d are cliques of g. It thus follows that every maximal clique

is a bag of d. That is, MaxClq(g) ⊆ bags(d). Finally, Proposition 6.25 states that the

bags of d are an antichain w.r.t. set inclusion, and hence, bags(d) ⊆ MaxClq(g). We

conclude that bags(d) = MaxClq(g), as claimed.

Based on Lemma 6.27, we define M to be the function that maps every h ∈ MinTri(g)

to the equivalence class of the proper tree decomposition of h. Lemma 6.28 states that

M has the required properties.

Lemma 6.28. Let g be a graph. The mapping M is a bijection between MinTri(g) and

the equivalence classes of ≡b over the proper tree decompositions of g.

Proof. We show that M has the correct range and that it is bijective.

M has a proper range Let h be a minimal triangulation of g, and let d be a proper

tree decomposition of h in M(h). Then d is also a tree decomposition of g, as the three

properties of a tree decomposition still hold. We need to show that d is a proper tree

decomposition of g. According to Lemma 6.27, we have bags(d) = MaxClq(h), and

therefore, saturate(g, d) = h. Assume, by way of contradiction, that d is improper.

Then d is strictly subsumed by some tree decomposition d′ of g, meaning that d′ v d.

Let h′ be the graph saturate(g, d′). From Proposition 6.26 it follows that h′ is a

triangulation of g. From d′ v d and the fact that every bag of d is a clique of h, we

conclude that E(h′) ⊆ E(h). And since h is a minimal triangulation, we get that h = h′.

We can now conclude that d′ is also a tree decomposition of h: the junction-tree property

holds and the nodes are covered since it is a tree decomposition of g, and the edges

are covered since those are the edges of h′ that are covered by its definition. We get

that both d and d′ are tree decompositions of h, and d is strictly subsumed by d′, which

contradicts the fact that d is a proper tree decomposition of h.
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M is injective Let h1 and h2 be two minimal triangulations such that h1 6= h2.

Without loss of generality, assume that the edge {u, v} is in h1 but not in h2. The nodes

u and v are part of some maximal clique of h1, so they share a bag in M(h1). But they

are not part of any clique of h2, so they do not share any bag in M(h2). Therefore,

M(h1) 6= M(h2).

M is surjective Given a proper tree decomposition d of g, we need to show that

there exists a minimal triangulation h of g such that d ∈ M(h). Consider the graph

h = saturate(g, d). We show that h is a minimal triangulation and that d ∈M(h).

We first show that h is a minimal triangulation of g. According to Proposition 6.26,

h is a triangulation of g. Assume, by way of contradiction, that h is not minimal.

Then there exists a minimal triangulation h′ of g obtained from h by removing some

edges; denote one of these edges by e. Consider a tree decomposition d′ ∈M(h′). The

clique containing e in h is not a clique in h′, and so bags(d) 6⊆ bags(d′). Also note that

since h′ ⊆ h, every maximal clique of h′ is contained in some maximal clique of h, and

therefore d′ v d. Then d′ strictly subsumes d, in contradiction to d being proper.

Finally, we need to show that d is a proper tree decomposition of h. The nodes of h

are covered in d, and the junction-tree property holds, since d is a tree decomposition

of g. The new edges of h are covered in d since they are all a result of saturation

of the bags of d. So d is a tree decomposition of h, and we claim that it is proper.

Assume, by way of contradiction, that d is not a proper tree decomposition of h. Then,

the tree decomposition d′ that strictly subsumes it is also a tree decomposition for g,

contradicting the fact that d is a proper tree decomposition of g.

To complete the proof of Theorem 6.22, we explain how the proper tree decomposi-

tions in the class M(h) can be enumerated with polynomial delay for h ∈ MinTri(g).

Jordan [Jor02] shows that, given a chordal graph h, a tree over the bags that represent

the maximal cliques of h is a tree decomposition if and only if it is a maximal spanning

tree, where the weight of an edge between two bags is the size of their intersection.

Hence, this enumeration problem is reduced to enumerating all maximal spanning trees,

which can be solved in polynomial delay [YKW10]. Since the number of maximal cliques

is at most the number of nodes in chordal graphs [Gav74], we have a polynomial delay

algorithm for enumerating the tree decompositions. This concludes the proof.

According to Corollary 6.23, we can enumerate all proper tree decompositions with

incremental polynomial time. Note that this section also implies another alternative:

we can enumerate only one representative of every equivalence class with the same

complexity guarantees. That is, we can enumerate one proper tree-decomposition of

each possible bag configuration with incremental polynomial time. The choice of which

variation to use depends on the application at hand. For some applications, different

tree-decompositions with the same bags may be of different quality, while for others

only the bags matter.
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6.5 Experimental Evaluation

We now describe an experimental study over an implementation of our enumeration

algorithm for minimal triangulations, namely the algorithm EnumMIS of Algorithm 6.1

for the SGR (Gms, Ams
V , Ams

E ), calling the procedure Extend of Algorithm 6.3. The

goal of the experimental study is twofold. First, we wish to understand how practical

the execution cost of the algorithm is for enumerating many minimal triangulations

(and tree decompositions). Second, we wish to study the ability of the algorithm to

produce many high-quality triangulations, given an underlying triangulation algorithm

(for Extend), and even to improve upon standard quality measures of the underlying

algorithm itself. In Section 6.5.1 we describe the experimental setup, in Section 6.5.2

we report on the efficiency of the algorithm in terms of its delay, and in Sections 6.5.3

and 6.5.4 we study the quality of the results.

6.5.1 Experimental Setup

We first describe the general setup for our study.

Implementation and Hardware. We implemented all algorithms in C++, with

STL data structures.1 All experiments were carried out on a 2.6GHz dual-core laptop

with 8GB of RAM running Windows 10 professional.

Triangulation Algorithms. We implemented two well known triangulation algo-

rithms as the procedure Triangulate in line 2 of the procedure Extend (Algo-

rithm 6.3). Both algorithms apply the general technique of node-elimination order-

ing [OCF76], where nodes are eliminated from the graph in turn, by adding a subset

of fill edges between the eliminated node and its neighbors in the (leftover) graph.

Both algorithms guarantee a minimal triangulation (hence there was no need to call

MinTriSandwich(g[ϕ], gt) in line 3 of Extend).

• MCS M [BBH02]. This is an extension of the Maximum Cardinality Search

(MCS) algorithm for recognizing chordal graphs [TY84], which finds a minimal

elimination ordering along with its corresponding minimal triangulation.

• LB TRIANG [BBH+06]. This algorithms guarantees minimality of the triangu-

lation by adding only a subset of the fill edges at each of the elimination steps, and

allows for complete flexibility in determining the elimination order. We applied

the min fill heuristic that selects, at each iteration, the node whose elimination

results in the smallest number of edges to add.

Datasets. We used three types of datasets: probabilistic graphical models, database

queries, and random (synthetic) graphs. For the first type, we used the following

1The code is available online: https://github.com/NofarCarmeli/MinTriangulationsEnumeration
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benchmark networks from the UAI probabilistic inference challenge.2 The datasets

Alchemy and DBN from the challenge are not described here as each of their graphs had

only one or two minimal triangulations, and the enumeration ended instantaneously.

• Promedas: The Promedas (PRObabilistic MEdical Diagnostic Advisory System)

Markov networks represent medical diagnosis cases, and consist of binary variables

that were converted from layered noisy-or Bayesian networks. The dataset includes

33 graphs with 26-1039 nodes and 36-1696 edges, and many of them are considered

too difficult for exact inference.3

• Object detection: Markov Random Fields for object-detection tasks in computer

vision. It includes 79 instances of connected networks, each containing 60 nodes

and between 135 to 180 edges.

• Image segmentation: Bayesian networks generated from image-segmentation

tasks. It includes 6 graphs with 226-235 nodes and 617-647 edges.

• Grids: An N × N grid network. Such networks that are common in image

processing [BKR11], and networks that model problems such as medical diagnosis

and object detection. This dataset includes 8 grids with N = 10 and N = 20,

resulting in graphs with 100 or 400 nodes, and 180-760 edges.

• Pedigree: Bayesian networks used to model genetic information [FG02]. The

data set includes 3 graphs, each has 385 nodes and 930 edges.

• CSP: Constraint-satisfaction problems. There are 3 instances in the dataset, with

67-100 nodes and 226-619 edges.

The datasets of second and third types are as follows.

• TPC-H: Graphs induced from TPC-H. These are the Gaifman (primal) graphs

of joins for implementing the TPC-H benchmark queries in LogiQL, the Datalog

variant of LogicBlox [AtCG+15].4 The queries include up to 22 nodes, and up to

46 edges, and their treewidth is up to 7.

• Random: Random G(n, p) graphs in the Erdős-Rényi model. The number of

nodes is n and every pair of nodes is connected by an edge with probability p

(independently). We generated 54 random graphs for varying n between 30 and

200, and three values of p: 0.3 (sparsest), 0.5 and 0.7 (densest).

As a baseline approach, we implemented the algorithm of DunceCap [TR15] for

generating all of the generalized hypertree decompositions (each involving an under-

lying tree decomposition). However, this algorithm is designed to handle small join

queries and to span a much greater space of objects (namely, the generalized hypertree

decompositions). In particular, on the TPC-H dataset we observed that on the smaller

queries our algorithm is faster by 3 to 4 orders of magnitude, and on some of the larger

queries (Q7 and Q9) we could not get their algorithm to terminate in less than two

hours (while our algorithms terminated in a few seconds, as we later discuss). Therefore,

2http://www.cs.huji.ac.il/project/PASCAL/showNet.php
3http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
4The queries, provided to us by LogicBlox, are used for benchmarking the engine.
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Figure 6.3: Average delay (in seconds) for the two triangulation algorithms over the
probabilistic-graphical-model benchmarks: Object Detection (•), Segmentation (•),
Pedigree (•), Grids (•), Promedas (•), CSP (•) .

we decided to exclude comparisons to this implementation. As of today, we are not

aware of any other published algorithms for enumerating (minimal) triangulations or

tree decompositions with guarantees of correctness (completeness).

6.5.2 Execution Cost

In what follows we report on the delay of the two variants of the implementation,

corresponding to the two triangulation algorithms LB TRIANG and MCS M.

Probabilistic graphical models

We measured the average delay between minimal triangulation printouts for the network

datasets from the UAI challenge. The measurements were conducted during 30 minutes

executions. 5 of the graphs in Promedas, and one graph of CSP completed the enumer-

ation within this time. We plotted the delay of the other graphs against the number

of their edges. The plots, corresponding to the two minimal triangulation algorithms

LB TRIANG and MCS M, are presented in Figures 6.3a and 6.3b, respectively, using

log-scale. Overall, we see that the delay increases with the size of the graph. However,

this trend varies between the different benchmarks. While this dependency is apparent

for the Promedas data set, the average delay for object detection has little correlation

with the number of edges in the graph.
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Figure 6.4: Average delay over 54 graphs randomly generated from the Erdős-Rényi
G(n, p) for varying n and p.

Random graphs

We measured the average delay (in seconds) between the printout of consecutive minimal

triangulations during a 30 minute execution. The plots in Figures 6.4a and 6.4b show

the average delay vs. the size of the graph for the two variants. We can see that the

delay increases with the size of the graph, and that the general trend is that the delay

is larger for denser graphs. We also see that for LB TRIANG the delay is generally

longer than for MCS M.

Database queries

We evaluated our enumeration algorithm over a set of 22 queries from the TPC-H

dataset. The graphs of these queries are quite small when compared to the UAI datasets

(< 23 nodes). Moreover, half of these graphs are chordal to begin with (i.e., have

only one minimal triangulation—the graph itself), and hence, irrelevant for us. Except

for two queries, all of the rest had at most 5 minimal triangulations. The remaining

two queries are Q7 (Volume shipping Query) and Q9 (Product Type Profit Measure

Query), and they have a considerable number of minimal triangulations: 700 and 588,

respectively. When considering the minimum-width tree decomposition for each of the

queries, the largest bag was of size 8; this is due to a relation of arity 8 in the query. In

fact the largest bag in each of the queries had at most two variables more than the size
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Figure 6.5: Delay behavior in two printing modes: UG (Upon Generation, as in
EnumMIS), and UP (Upon Pop, as in EnumMISHold).

Dataset #trng min-w #≤w1 (%) %w↓ (max)

MCS M

Promedas (28) 11064.5 25.8 3713.6 (33.6%) 2.2 (15.2)

Grids (8) 40319.8 18.4 93.6 (0.2%) 0.0 (0.0)

Obj. Detection (79) 100349.9 6.1 42743.9 (42.6%) 0.4 (12.5)

Segmentation (5) 12836.5 23.0 20.5 (0.2%) 0.0 (0.0)

Pedigree (3) 7789.0 31.7 3087.3 (39.6%) 0.0 (0.0)

CSP (2) 29450.5 16.5 26741.5 (90.8%) 13.2 (26.3)

LB TRIANG

Promedas (28) 4220.7 18.6 2352.0 (55.7%) 1.9 (16.7)

Grids (8) 13881.3 24.5 1273.0 (9.2%) 3.0 (8.7)

Obj. Detection (79) 33295.4 5.8 15709.3 (47.2%) 0.0 (0.0)

Segmentation (5) 5174.2 21.8 2141.8 (41.4%) 10.3 (20.7)

Pedigree (3) 3646.0 23.7 3227.7 (88.5%) 5.3 (14.8)

CSP (2) 11772.0 16.5 3760.5 (31.9%) 0.0 (0.0)

Table 6.1: Width statistics on generated triangulations following 30 minutes execution.

of the largest relation. The execution for all 22 queries completed within 5 seconds.

In one of the queries we compared the delays for two modes of printing: the one

of EnumMIS and the one of EnumMISHold that prints upon extraction from the

queue, as described in Section 6.2.5. We refer to the former as UG (Upon Generation)

and to the latter as UP (Upon Pop). Recall that both modes guarantee incremental

polynomial time (Theorem 6.10). This gives us a sense of the practical impact of

printing the solutions as soon as possible compared to holding the solutions to attain

an easy-to-prove incremental polynomial time algorithm. The results are in Figure 6.5.

While the dotted line (of UG) has bursts of high-frequency prints followed by periods

where no new triangulation is created, the solid line (UP) has a more steady pace as can

be seen by the constant slope in Figure 6.5. As expected, despite the fact that the last

result of UG is printed earlier that of UP, termination is at the same time in both modes,

as the algorithm needs to check that there are no additional minimal triangulations.
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Dataset #trng min-f #≤f1 (%) %f↓ (max)

MCS M

Promedas (28) 11064.5 3353.4 8136.0 (73.5%) 18.1 (49.9)

Grids (8) 40319.8 2752.6 15771.4 (39.1%) 4.2 (28.1)

Obj. Detection (79) 100349.9 30.0 27614.1 (27.5%) 19.9 (47.1)

Segmentation (5) 12836.5 2555.2 5269.7 (41.1%) 5.9 (12.5)

Pedigree (3) 7789.0 3525.7 743.0 (9.5%) 2.8 (3.5)

CSP (2) 29450.5 46.0 18815.5 (63.9%) 35.2 (55.8)

LB TRIANG

Promedas (28) 4220.7 1239.4 175.0 (4.1%) 0.2 (11.1)

Grids (8) 13881.3 1600.3 1.0 (0.0%) 0.0 (0.0)

Obj. Detection (79) 33295.4 27.6 5110.7 (15.3%) 10.4 (27.6)

Segmentation (5) 5174.2 1402.0 130.2 (2.5%) 1.2 (4.2)

Pedigree (3) 3646.0 1491.0 1.0 (0.0%) 0.0 (0.0)

CSP (2) 11772.0 34.5 664.0 (5.6%) 1.4 (3.0)

Table 6.2: Fill statistics on generated triangulations following 30 minutes execution

6.5.3 Quality

In what follows we report on the quality of the generated minimal triangulations in terms

of two standard measures of quality for triangulations and tree decompositions: fill and

width. Fill refers to the total number of edges added in order to make the resulting graph

chordal, while width refers to the size of the largest clique in the generated triangulation

(minus one).5 The natural benchmark for the quality of the triangulations is the first

result our enumeration returns, as it is the result we would get by running the minimal

triangulation algorithm we used, on the original input graph.

For each graph of the probabilistic inference dataset, we executed the enumeration

algorithm for 30 minutes. The results in Table 6.1 include only the experiments where

the enumeration did not complete. For each graph we measured the following: the

number of generated triangulations (#trng), the minimum observed width over all

printed triangulations (min-w), the number of printed triangulations of width at most

that of the first (#≤w1), the average reduction in width (over the dataset) and the

maximum improvement in parentheses (w↓ (%)). In Table 6.2 we show the same results

for fill instead of width (min-f, #≤f1 and f↓ (%)).

We can see that the algorithm, in both variants, is able to generate a significant

number of triangulations of high quality, in terms of both width and fill. Moreover, it

amplifies the quality of the underlying triangulation, by means of width, and much more

by means of fill. According to the number of triangulations printed, MCS M enables

generating twice as many triangulations as LB TRIANG. However, with the exception

of only a handful of the graphs tested, the triangulations generated by LB TRIANG are

5Recall that is NP-hard to find a triangulation that minimizes the fill [Yan81a] or the width [ACP87].
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Figure 6.7: Minimum width and fill over time.

superior in both the width and fill metrics (this is especially apparent for the Promedas

and Pedigree datasets). Furthermore, this set of superior triangulations accounts for a

larger portion of the total number of triangulations that generated.

6.5.4 Case Study

In this section we take a closer look at the behaviour of the enumeration during a single

execution. We use a graph from the Promedas dataset. In Figure 6.6 we show the

cumulative number of results generated over time. We consider three types of results:

(a) all minimal triangulations, (b) minimal triangulations of the minimum width (where

the minimum is taken over the printed triangulations), and (c) those with a width

at most that of the first triangulation (≤w1), which is the one that we would obtain

by using only the triangulation algorithm at hand. The reduction in the number of

new triangulations over time is consistent with the increase in the delay entailed in the

guarantee of incremental polynomial time, rather than polynomial delay.

Figure 6.7 presents the reduction in the minimum width and minimum fill obtained

during the execution of the algorithm. Each time slice records the minimum width

(solid curve) and minimum fill (dotted curve) observed up to that time. We can see

that both the width and the fill reduce over time, but the minimum observed width is

reached very quickly, while attaining the minimum observed fill takes longer.
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Chapter 7

Conclusions

We conclude the thesis with a summary of the main results and point at some open

problems following our work.

We studied when CQs and UCQs can be answered efficiently: with linear prepro-

ceesing time and constant or logarithmic time per answer. To evaluate the queries, we

demand either enumeration (with arbitrary order), random permutation or random

access. Our queries are either over general schemas or in the presence of functional

dependencies. We showed how in several settings, even though the queries do not have a

naturally acyclic tractable structure, we can identify implicit acyclicity and utilize it to

answer additional queries efficiently. We also established lower bounds for other queries.

Regarding CQs without self-joins, we saw that the free-connex queries are exactly

the tractable ones, and that Enum〈lin, const〉 = Enum〈lin, log〉 = REnum〈lin, log〉 =

RAccess〈lin, log〉, assuming conventional hypotheses. The same holds when the schema

contains unary FDs, but then the tractable CQs are the ones with a free-connex FD-

extension. That is, additional queries may become tractable in the presence of FDs.

This is also true when the FDs are replaced with CDs and when the CQs contain

disequalities. In the presence of general (non-unary) FDs or CDs, we showed similar

results if the extension is acyclic.

The picture is more involved in the case of UCQs, where RAccess〈lin, log〉 is a proper

subset of Enum〈lin, log〉. A union of intractable CQs may be tractable with respect

to Enum〈lin, const〉. In contrast, a UCQ may be intractable with respect to random

access even if every CQ it contains is tractable. To obtain random permutation, we

suggested two alternatives for a union of free-connex CQs: an algorithm with logarithmic

delay that applies for UCQs with a free-connex intersection, and an algorithm with

logarithmic delay in expectation that applies to all unions of free-connex CQs. Regarding

enumeration, we formalized how CQs within a union can make each other easier by

providing variables, introduced union extensions, and showed that UCQs with a free-

connex union extension are tractable. Our techniques involving dependencies also apply

to UCQs, and they can make otherwise intractable UCQs tractable with respect to

either of our three tasks.
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We proved conditional lower bounds showing that our techniques for the enumeration

of UCQs can be applied to all tractable queries in some cases. In case of a union of

two intractable CQs or two acyclic body-isomorphic CQs, free-connex union extensions

fully capture the tractable cases, under conventional complexity assumptions. Then, we

defined the unbalanced triangle detection hypothesis, showed that it exactly captures

the hardness of some UCQs, and that if we assume this hypothesis, we get a dichotomy

for unions of two binary UCQs: these are tractable if and only if they have a free-connex

union extension.

Lastly, we tackled the task of enumerating proper tree-decompositions, which can

be used as query plans that extract acyclicity from cyclic queries. We proved that

enumerating the tree decompositions can be done via the enumeration of minimal

triangulations, and showed how to solve the latter problem with incremental polynomial

time. We did so by introducing the concept of a succinct graph representation (SGR)

and reducing the problem of enumerating the minimal triangulations to the enumeration

of the maximal independent sets of an SGR. Our experimental study shows that the

algorithm is effective on graphs of various domains: it is able to enhance off-the-shelf

algorithms for triangulation by generating many high-quality different triangulations.

Future Research

We describe some directions for future work next.

Completing characterizations. In Sections 3.2 and 3.3, we saw conditional lower

bounds for the enumeration of UCQ answers. Can we complete a dichotomy and show

these lower bounds for all UCQs that do not admit a free-connex union extension? In

particular, we defined UTD and showed that if these extensions capture all tractable

cases, then UTD necessarily holds. Can we complete our lower bounds based on UTD

and show the hardness of all UCQs with no tractable extension based on this hypothesis?

Our characterization regarding FD-cyclic CQs is not complete either. Our proof for the

hardness of FD-cyclic CQs assumes that all FDs are unary. It remains open to answer

whether this result fold for general FDs and to classify Example 5.24.

Tools for enumeration lower bounds. The conditional lower bounds we build

upon all rely either on the decision problem (e.g., Hyperclique) or the total time

to find all answers (e.g., BMM). We are currently lacking tools for showing lower

bounds for enumeration based on the delay between answers. In particular, can we find

techniques for showing lower bounds for random permutation in cases where we can

solve enumeration efficiently?

Reasoning about self-joins. Another gap following our techniques for lowers bounds

is that they all assume no self-joins. This is a restriction that applies also in the CQ
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results that we build upon [BDG07, BB13], and it is in place to ensure that we can

freely encode different atoms with different relations. Note that our upper bounds allow

for self-joins, so do not suffer from the same restriction. Can a query with self-joins be

tractable while a query with the same structure and distinct relations is intractable? If

not, can we extend our lower bounds to apply also for self-joins?

Finding the tractable extensions. We showed that any UCQ with a free-connex

union extension is tractable with respect to enumeration, but how do we get such an

extension? For the fragments of UCQs where we proved lower bounds, we saw that

for every tractable UCQ, we can get a free-connex extension by covering one difficult

structure at a time (Definition 3.46). Is this true in general for all UCQs? Also, when the

UCQs are over a schema with dependencies, we showed that we can benefit from taking

an FD-extension of a union extension (Section 5.3.3). Can we get all tractable unions

with respect to enumeration by first applying a union extension and then applying the

FD-extension or do we sometimes need to apply them in the opposite order?

Efficient random permutation for more queries. We showed that UCQs with a

free-connex union extension are tractable with respect to enumeration (Section 3.1.4),

and we showed efficient algorithms for the random permutation of unions of free-connex

CQs (Section 4.3). Can we achieve efficient random permutation for UCQs that contain

intractable CQs but have a free-connex union extension? Also, we showed that we can

achieve efficient random access and random permutation for FD-free-connex CQs. Can

we do the same for CD-free-connex CQs? (see Section 5.3.1.)

Random access and counting. We defined a random access algorithm to return an

out-of-bound message when necessary. Then, efficient random access implies the ability

to count the answers (see the proof of Theorem 4.9). What happens if we define random

access such that it gives no guarantee on the answer when it receives an index too

large? Can we find an alternative hardness proof that does not rely on the out-of-bound

behavior? If not, can we find an efficient random access algorithm even in cases where

it takes too long to count the number of answers?

Free-connex tree decompositions. Tree decompositions can be used to transform

cyclic queries into acyclic ones. However, we know that in the presence of projections,

acyclicity is not the best structure we can hope for: acyclicity only allows for linear-delay

enumeration [BDG07], while we would like free-connexity that can be used to achieve

constant delay. Can we find an efficient way to take the projections into account when

generating decompositions and create a free-connex decomposition in which the free

variables form a subtree?
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Improved tree decompositions enumeration. It is left open whether the enu-

meration of the minimal triangulations can be carried out with polynomial delay. As

discussed in in Section 6.3 and Section 6.2.6, it is not clear how to do this with known

techniques, and the abstraction used here cannot achieve this time bound. Polynomial

delay is possible in the case that the number of minimal separators of the input graph is

polynomial in the size of the input graph. In a follow up work to the original publication

of the work in Chapter 6, Ravid et al. [RMK19] showed how to perform in such cases

ranked enumeration under a wide class of cost functions that generalizes width and fill-in.

If the number of minimal separations is not bounded, the question of incorporating

some order remains open.

Reducing space requirements. Our research focuses on time complexity, and

several of our solutions rely on storing all produced answers. An interesting question

is whether we can avoid this large use of memory while achieving the same time

bounds. This question remains open for: UCQs with a tractable union extension (see

Section 3.4.2), CD-free-connex CQs (see Section 5.4) and tree decompositions (see

Section 6.2.7).

Exploring additional settings. In Section 3.4.1, we saw that the complexity of

answering UCQs changes with the addition of disequalities; we also saw some cases of

tractable unions containing an intractable CQ. Can we find a characterization for all

such UCQs with disequalities? In addition, there is a dichotomy for enumerating CQs

with negation [BB13]. Can we extend it to accommodate FDs? What happens to the

enumeration complexity when we combine unions with negation? Also, we showed that

FDs and CDs have a positive impact on the complexity of answering queries. Does the

same hold for other types of dependencies (e.g., inclusion dependencies)?

Performance in practice. Even though this work is mainly theoretical, some of

this research is accompanied by experiments. We presented an experimental study for

the enumeration of tree-decompositions (Section 6.5). In fact, the algorithm presented

here holds many opportunities for optimization over real-life graphs, and an optimized

version of the code is available online.1 The results regarding random permutation were

also implemented, and an experimental study shows that our algorithms outperform the

sampling-with-rejection alternatives [CZB+20]. Yet, there is still much room to perform

extensive practical research and compare the acyclicity-based approach we take here to

the approach common in current industrial database management systems.

1https://github.com/TechnionTDK/efficient-td-enum

152

https://github.com/TechnionTDK/efficient-td-enum


Bibliography

[ACP87] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Com-

plexity of finding embeddings in ak-tree. SIAM Journal on Algebraic

Discrete Methods, 8(2):277–284, 1987.

[AF96] David Avis and Komei Fukuda. Reverse search for enumeration.

Discret. Appl. Math., 65(1-3):21–46, 1996.

[AFG16] Myrto Arapinis, Diego Figueira, and Marco Gaboardi. Sensitivity

of counting queries. In 43rd International Colloquium on Automata,

Languages, and Programming, ICALP 2016, Rome, Italy, pages 120:1–

120:13, 2016.

[AGPR99] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar

Ramaswamy. Join synopses for approximate query answering. In

SIGMOD, pages 275–286. ACM Press, 1999.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, Boston, MA, USA, 1995.

[AP09] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and

sparse matrix multiplications. In ICDT, pages 121–126, 2009.

[AtCG+15] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan

Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.

Design and implementation of the logicblox system. In SIGMOD,

pages 1371–1382. ACM, 2015.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures

imply strong lower bounds for dynamic problems. In Foundations of

Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,

pages 434–443. IEEE, 2014.

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting

given length cycles. Algorithmica, 17(3):209–223, 1997.

153



[BB13] Johann Brault-Baron. De la pertinence de l’énumération: complexité
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דבר להניח ניתן כשלא כלליים, נתונים למסדי תקפות כה עד שהזכרנו האפיון תוצאות כל

הנתונים. במסד השמורות שונות תכונות בין תלויות יש קרובות לעיתים בפועל, הקלט. על

ששאילתות מראים אנחנו ולמעשה תקפות, לא שהזכרנו הקושי תוצאות כאלה, במקרים

תלויות יש בהם מקרים בוחנים אנחנו הנתונים. במסד תלויות כשיש קלות הן נוספות

מבוססת הרחבה עם ששאילתות ומראים תלויות, מבוססת הרחבה מגדירים פונקציונליות,

שתיארנו לדיכוטומיות הרחבה מראים אנחנו בנוסף, קלות. הן מחוברת־חופשיים תלויות

היא השאילתה כזה, במקרה אחר. גורר אחד משתנה בהן תלויות של במקרה כה עד

הדיכוטומיה לפי קל מבנה בעלת היא שלה התלויות מבוססת ההרחבה אם ורק אם קלה

כלליים. נתונים מסדי עבור הידועה

או איחוד מבוססות בהרחבות להשתמש ניתן לא כקשות, המאופיינות שאילתות עבור

שקולה. מעגלים חסרת לצורה השאילתה את לשכתב כדי תלויות מבוססות בהרחבות

את לשכתב ניתן כזה, פירוק בעזרת השאילתה. את לפרק יכולים אנחנו כחלופה,

.[GGS05] מלינארי גדול מקדים עיבוד זמן לאחר שקולה מעגלים חסרת לצורה השאילתה

שאילתות של במקרה להשיג שהצלחנו האופטימלי הזמן את נותן לא הזה שהפתרון למרות

השאילתה של ישיר לחישוב בהשוואה משמעותית החישוב זמן את להוריד יכול הוא קלות,

לגרף איכותי עצי פירוק מציאת של המשימה את בוחנים אנחנו לכן, הנתונה. המעגלית

השאילתה. את המייצג

השימוש נפוץ לכן, .[ACP87] כקשה שהוכחה בעיה היא אופטימלי עצי פירוק מציאת

הפירוק, לאיכות מאוד רגיש החישוב זמן זאת, עם טובים. עצים שמוצאות בהיוריסטיקות

בגישה שנמצא לפירוק האופטימלי הפירוק בין הריצה בזמן משמעותי הבדל וייתכן

יתירים. שאינם הפירוק עצי כל מניית של בגישה לנקוט מציעים אנחנו היוריסטית.

סיבוכיות גרף. של המינימליות הטריאנגולציות כל למציאת שקולה הזו שהמשימה מתברר

אנחנו הזאת. בתזה אותה פותרים ואנחנו פתוחה, בעיה היתה הטריאנגולציות מציאת

מנת על בודד פירוק למציאת קיים פתרון כל על להתבסס שיכול אלגוריתם מציעים

שהוחזר פירוק מתי להחליט יכול המשתמש אז, איכותיים. פירוקים של רחב היצע ליצור

האלגוריתם. ריצת את ולעצור מספיק, טוב הוא
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דיכוטומיה התשובות. כל למציאת כולל זמן פחות לו ומספקת יעיל מאלגוריתם שלנו

היא כזו שאילתה מראה: עצמיים צירופים ללא הטלה עם צירוף שאילתות עבור ידועה

נקראת שאילתה .[BDG07] ״ומחוברת־חופשיים״ מעגלים חסרת היא אם ורק אם קלה

המכיל חדש אטום הוספת לאחר גם מעגלים חסרת נשארת היא אם מחוברת־חופשיים

החופשיים. המשתנים את

זו הטלה. עם צירוף של מאיחוד המורכבות שאילתות לבחון הוא הבא הטבעי הצעד

רלציונית אלגברה שאילתת כל בעזרתה לבטא ניתן כי שאילתות, של חשובה מחלקה

הופכת הסיבוכיות ומציאת מורכבת, יותר נהיית התמונה איחוד, כשמאפשרים חיובית.

גם בוחנים אנחנו קל. תמיד הוא קלות שאילתות של איחוד מאתגרת. יותר למשימה

של רק הוא האיחוד אם שאפילו ומראים קשה, שאילתה מכיל שהאיחוד המקרה את

כיצד מזהים אנחנו זה, לצורך קלה. להיות יכולה כולה השאילתה קשות, שאילתות

מגדירים אנחנו משתנים. אספקת בעזרת זה את זה לפשט יכולים באיחוד שונים חלקים

מחוברת־חופשיים הרחבה עם שאילתה שכל ומראים איחוד, מבוססת שאילתות הרחבת

קלה. היא

מחוברת־חופשיים הרחבה שאילתות, של מסוימות מחלקות שעבור מוכיחים גם אנחנו

שתי מכיל שהאיחוד במקרה תקף זה הקלות. השאילתות כל את בדיוק מאפיינת

כדי עד זהות באיחוד השאילתות ששתי במקרה או קשות, הטלה עם צירוף שאילתות

ומראים מאוזנים, לא בגרפים משולשים מציאת על השערה מגדירים אנחנו בנוסף, הטלה.

שאין איחוד שאילתות חישוב של לקושי המשולשים מציאת של הקושי בין הדוק קשור

ההרחבה – נכונה ההשערה שאם מראים אנחנו בפרט, מחוברת־חופשיים. הרחבה להן

בינאריות שאילתות שתי של איחוד של במקרה הקלות השאילתות כל את מאפיינת

ההשערה – הקלות השאילתות כל את מאפיינת כזו הרחבה ואם עצמיים, צירופים חסרות

נכונה. בהכרח

מעבר קלות משאילתות נוספת תועלת להפיק ניתן כיצד בוחנים אנחנו מכן, לאחר

שאילתות על לענות היא הזה בחלק שלנו המטרה כה. עד בהן שדנו המנייה לדרישות

של הביניים בתוצאות השימוש אם נדרשת הסדר על כזו הבטחה אקראי. בסדר

אנחנו התוצאות. כל את מייצגות והן סטטיסטית משמעות להן שיש מניח השאילתה

אקראית לגישה יעיל אלגוריתם ברשותנו יש אם כזאת מנייה להשיג שניתן מראים

חוקרים אנחנו התשובות. ברשימת מיקומה בהינתן תשובה מציאת השאילתה: לתוצאות

ללא התשובות מניית של לסיבוכיות בהשוואה האלה המשימות שתי של הסיבוכיות את

הסדר. על דרישות

מחוברות־החופשיים השאילתות הטלה, עם צירוף שאילתות של שבמקרה מראים אנחנו

בסדר מנייה של במקרה המשימות. שלושת לכל ביחס הקלות השאילתות בדיוק הן

עוקבות. תשובות בין לוגריתמי עיכוב מאפשרים אנחנו אקראית, גישה ושל אקראי

הוא קלות שאילתות של איחוד מורכבת: יותר התמונה איחוד, שאילתות של במקרה

מציעים אנחנו אקראית. לגישה ביחס קשה להיות יכול הוא אבל למנייה, ביחס קל תמיד

ואלגוריתם לוגריתמית, עיכוב תוחלת עם אלגוריתם אקראי: בסדר למנייה פתרונות שני

מהמקרים. בחלק רק בו להשתמש שניתן העיכוב על לוגריתמי חסם עם נוסף
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תקציר

עם המידע. ניהול בתחום בסיסית בעיה הוא נתונים מסדי מעל שאילתות חישוב

ומתחזק ביעילות, המידע ניתוח של חשיבותו גדלה בעולם, הזמין המידע כמות עליית

התקדמות חלה האחרונות בשנים לכן, ביעילות. לחשב שניתן השאילתות באפיון הצורך

שאילתות. של התשובות מניית של המדויקת הסיבוכיות בהבנת משמעותית

היא עליו הנתונים ממסד גודל בסדרי גדולה להיות יכולה שאילתה של התשובות כמות

בגודל לינארי בזמן התוצאות כל את להחזיר לקוות ניתן לא כאלה, במקרים מתבססת.

להדפיס ואז הקלט את לקרוא נדרש כזו שאילתה לחישוב אלגוריתם כי הנתונים, מסד

המנייה, סיבוכיות מתחום סיבוכיות במדדי משתמשים אנחנו לכן, התוצאות. כל את

בעיכוב ואז לינארי מקדים עיבוד בזמן לפתור שניתן הבעיות מחלקת את בוחנים ואנחנו

ביותר הקלות המנייה בעיות הן אלה מסוים, במובן עוקבות. תשובות שתי כל בין קבוע

האחרות ולבעיות ״קלות״, הזו במחלקה לבעיות נקרא הזה בתקציר טריויאליות. שאינן

״קשות״. נקרא

בהינתן היא: לפתור מעוניינים שאנחנו והבעיה מראש, כנתונה לשאילתה מתייחסים אנחנו

הנתונים מסד על השאילתה של התשובות כל את להחזיר יש כקלט, נתונים מסד

מידע: סיבוכיות של במדד משתמשים אנחנו הסיבוכיות ניתוח לצורך בפרט, כפלט.

קבוע. נחשב הנתונים) מסד מגודל משמעותית קטן כלל בדרך (שהוא השאילתה גודל

גם זו טבלאות. צירוף היא נפוצות שאילתות בלב שעומדת ביותר הבסיסית הפעולה

בלבד. מצירוף המורכבות בשאילתות תחילה נדון חישובית. יקרה הכי הפעולה כלל בדרך

(אין עצמיים צירופים מכילה לא השאילתה אם מעגלים, המכילות צירוף שאילתות עבור

לינארי בזמן תשובות לה יש האם לקבוע ניתן לא בשאילתה), פעמיים שמופיעה טבלה

מעגלים חסרות צירוף שאילתות שמחשב ידוע אלגוריתם קיים זאת, לעומת .[BB13]

עצמיים: צירופים ללא צירוף שאילתות עבור דיכוטומיה יש כלומר, .[Yan81b] ביעילות

כמו כאן, הקושי תוצאות מעגלים. חסרות הן אם ורק אם קלות הן כאלה שאילתות

הנהוגות מסוימות קושי בהנחות מותנות בתזה, מראים שאנחנו הקושי תוצאות כל גם

המדויקת. הסיבוכיות בתחום

ורמת מתקיימת, לא כבר שהזכרנו הדיכוטומיה הטלה, גם צירוף לשאילתות כשמוסיפים

שונות תשובות ששתי שייתכן היא הסיבה לעלות. יכולה השאילתה חישוב של הקושי

כפילויות להדפיס מאפשרים לא שאנחנו מכיוון ההטלה. לאחר לזהות יהפכו לצירוף

הדרישות את מקשיחה ההטלה לתשובה, קבוע זמן רק לאלגוריתם מספקים ואנחנו
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