
Discrete Applied Mathematics 303 (2021) 216–236

a

b

t
T
t
n
g
d
s
m

t
t
a
T
t
c
a
K
r

k

h
0

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Efficiently enumeratingminimal triangulations
Nofar Carmeli a,∗, Batya Kenig a, Benny Kimelfeld a, Markus Kröll b
Technion, Haifa, Israel
TU Wien, Vienna, Austria

a r t i c l e i n f o

Article history:
Received 19 July 2019
Received in revised form 30 April 2020
Accepted 29 May 2020
Available online 22 June 2020

Keywords:
Minimal triangulation
Tree decomposition
Enumeration algorithm
Minimal separators
Maximal independent sets
Maximal cliques

a b s t r a c t

We present an algorithm that enumerates all the minimal triangulations of a graph
in incremental polynomial time. Consequently, we get an algorithm for enumerating
all the proper tree decompositions, in incremental polynomial time, where ‘‘proper’’
means that the tree decomposition cannot be improved by removing or splitting a bag.
The algorithm can incorporate any method for (ordinary, single result) triangulation or
tree decomposition, and can serve as an anytime algorithm to improve such a method.
We describe an extensive experimental study of an implementation on real data from
different fields. Our experiments show that the algorithm improves upon central quality
measures over the underlying tree decompositions, and is able to produce a large
number of high-quality decompositions.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many intractable computational problems on graphs admit tractable algorithms when applied to trees or forests. A
ree decomposition extracts a tree structure from a graph by grouping nodes into bags (each treated as a single node).
he corresponding operation on hypergraphs is that of a generalized hypertree decomposition [20] that consists of a
ree decomposition of the primal graph (which has the same set of nodes, and an edge between every two hyperedge
eighbors), and an assignment of hyperedge labels (edge covers) to the tree nodes [21]. Tree decompositions and
eneralized hypertree decompositions have a plethora of applications, including optimization of (multi)join queries in
atabases [20,27,42], containment of database queries, constraint satisfaction problems [30], prediction of RNA secondary
tructure [45], computation of Nash equilibria in games [20], inference in probabilistic graphical models [32], and weighted
odel counting [28].
Past research has focused on obtaining a ‘‘good’’ tree decompositions, where goodness is typically defined as having low

ree width [39]—the maximal cardinality of a bag (minus one). Nevertheless, finding a tree decomposition of the minimal
ree width is NP-hard [2], as is the case for other common measures of goodness for tree decompositions such as fill [44],
nd in the case of hypergraphs hypertree width [22], generalized hypertree width [23], and fractional hypertree width [34].
herefore, heuristic algorithms are often applied [4,6]. The different measures of goodness are motivated by the fact that
he needs of different applications are often different from (though related to) the width. Additional examples are the
omplexity of weighted model counting, induced by a parameter associated with the ‘‘CNF-tree’’ of the formula [21,28],
nd the effectiveness of adhesions (parent–child intersection) for caching in terms of dimension and skew [27]. In fact,
alinsky et al. [27] have illustrated how, in real-life scenarios, isomorphic tree decompositions of a minimal width may
esult in orders-of-magnitude difference in (join) performance.

∗ Corresponding author.
E-mail addresses: snofca@cs.technion.ac.il (N. Carmeli), batyak@cs.technion.ac.il (B. Kenig), bennyk@cs.technion.ac.il (B. Kimelfeld),

roell@dbai.tuwien.ac.at (M. Kröll).
ttps://doi.org/10.1016/j.dam.2020.05.034
166-218X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2020.05.034
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2020.05.034&domain=pdf
mailto:snofca@cs.technion.ac.il
mailto:batyak@cs.technion.ac.il
mailto:bennyk@cs.technion.ac.il
mailto:kroell@dbai.tuwien.ac.at
https://doi.org/10.1016/j.dam.2020.05.034

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 217

m
i
d
t

The common approach is to devise a decomposition algorithm (exact, approximate or heuristic) to capture the desired
easure of goodness per application. However, this is a nontrivial challenge that (to the least) requires high expertise

n algorithms and tree decompositions. We propose an alternative approach—produce a large number of different tree
ecompositions, using a baseline decomposition method, and allow the application at hand to choose the best according
o its internal measure function. Our approach brings together results and techniques from the areas of chordal graphs
and enumeration theory in order to establish a practical tool for enhancing decomposition algorithms and, by implication,
the performance of various inference and optimization algorithms. Specifically, we explore the task of enumerating all (or
a subset of) the tree decompositions. Such algorithms have been proposed in the past for small graphs (representing
database queries), without complexity guarantees [42]. Our main result is an enumeration algorithm that runs in
incremental polynomial time [25], that is, the time between producing the Nth result and the (N+1)st result is polynomial
in N and in the size of the input.

We first need to define which tree decompositions should be enumerated, as many of them are effectively useless.
For example, if we take a graph that is already a tree, we do not wish to enumerate the tree decompositions that group
nodes with no reason; in fact, the tree itself is the only reasonable decomposition in this case. Therefore, we consider
only tree decompositions that cannot be ‘‘improved’’ by removing or splitting a bag, and we call such tree decompositions
proper. We prove that the proper tree decompositions are in a bijective (and efficiently computable) correspondence to
the minimal triangulations of the graph at hand, defined a follows. A triangulation of a graph g is a graph g ′ that is obtained
from g by adding edges so that g ′ is chordal, that is, g ′ does not have any induced simple cycle of more than three nodes.
A triangulation is minimal if no triangulation can be obtained using only a strict subset of the added edges.

So, the problem is reduced to the task of enumerating all of the minimal triangulations of a graph. In this manuscript
we devise an algorithm for performing this task in incremental polynomial time. Our approach is as follows. Parra and
Scheffler [36] have shown that there is a one-to-one correspondence between the minimal triangulations of a graph g
and the maximal independent sets of a special graph G. The nodes of G are the so called minimal separators of g , and
the edges are between crossing minimal separators. (Precise definitions are in Section 2.) So, enumerating the minimal
triangulations of a graph boils down to enumerating these maximal sets. It is well known that all the maximal independent
sets of a graph can be enumerated with polynomial delay [11,25]. However, this is insufficient for us, since the graph G is
not given as input, and in fact, its number of nodes can be exponential in the size of the original graph g . Therefore, we
cannot construct this graph ahead of time, and cannot directly use existing algorithms to establish incremental polynomial
time.

We address this problem by defining an abstraction of the graph G of minimal separators by means of a Succinct
Graph Representation (SGR), which is represented compactly by two algorithms: one for enumerating the nodes and
one for testing whether a given pair of nodes forms an edge. In particular, we can access the nodes of G through a
polynomial-delay iterator, due to a result by Berry et al. [5] (who show how to enumerate the minimal separators of a
graph). Applying previous results, we prove that the SGR for the minimal separator graph (i.e., G) meets certain tractability
conditions termed tractable expansion, which enable the enumeration of its maximal independent sets (i.e., g ’s minimal
triangulations) in incremental polynomial time in the size of the representation (which can be logarithmic in the size of
the graph itself).

In summary, we reduce the problem of enumerating the proper tree decompositions to that of enumerating the
minimal triangulations, which we reduce to the problem of enumerating the maximal independent sets of an SGR
with tractability properties, and we devise an algorithm for the latter task. An important feature of the algorithm is
that it can incorporate any black-box procedure for expanding a given independent set into a maximal one. When
applied to enumerating the proper tree decompositions, such a procedure can be any off-the-shelf algorithm for minimal
triangulation or tree decomposition (e.g., Maximum Cardinality Search [4] and LB-Triang [6]). However, our algorithm
executes this procedure on different versions of the original graph, each time with some new edges added. Hence,
our algorithm has the potential of using a high-quality decomposition algorithm for producing many high-quality
decompositions, enabling the user to choose the best one generated according to the specific measures of her use case
(may it be width or anything else).

After establishing our algorithm, we describe an experimental study where we have tested the ability of the algorithm
to utilize the aforementioned triangulation algorithms. The experimental study covers graphs of a wide range of domains
(where tree decomposition is needed for efficient analysis): join queries (from the TPC-H collection), Bayesian networks,
Markov Random Fields, grids, and random graphs. We tested the execution time (delay) of the algorithm, its ability to
reduce the width or fill (number of edges added to establish chordality), and the number of decompositions of quality
(width/fill) the same or better than that of the original off-the-shelf algorithm. The results show that, indeed, our algorithm
can effectively enhance the quality of the corresponding decomposition algorithm.

A short version of this manuscript was published in the 2017 Symposium on Principles of Database Systems (PODS). The
current version includes all proofs omitted from the short version. In addition, we have added Sections 2.6 and 3.3, where
we discuss the possibility of reaching a polynomial delay algorithm solving our problem, and prove that the approach
taken here cannot be used to reach such a time bound.

The rest of the manuscript is organized as follows. In Section 2 we give preliminary definitions and notation, and recall
basic results from the literature. The SGR framework is presented in Section 3, along with the enumeration algorithm
for maximal independent sets. In Section 4 we prove that the graph of minimal separating sets satisfies the tractability
requirements needed for the SGR enumeration algorithm, and thereby establish an algorithm for enumerating the minimal
triangulations. We show how this algorithm can enumerate the proper tree decompositions in Section 5. Then, the

experimental study is presented in Section 6, and we conclude in Section 7.

218 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

2

s

2

{

g

o
i
g
c
U
s

2

u
o
(
m

a
S
s

2

e
t
c

T

|

l

T

c
e
o
s

2

m

. Preliminaries

In this section we give some basic notation and terminology that we use throughout the paper. In addition, we recall
ome basic theory that we need in this paper.

.1. Graphs

The graphs in this work are undirected. For a graph g , the set of nodes is denoted by V(g), and the set of edges (pairs
u, v} of distinct nodes) is denoted by E(g). Let U be a set of nodes of a graph g . We denote by g|U the subgraph of g
induced by U; that is, V(g|U) = U and E(g|U) = {{u, v} ∈ E(g) | {u, v} ⊆ U}. We denote by g \ U the graph obtained from
by removing all the nodes in U (along with their incident edges), that is, the graph g|V(g)\U .
Let g be a graph and U a set of nodes of g . We say that U is an independent set if it does not contain both endpoints

f any edge, and it is a maximal independent set if it is an independent set and it is not strictly contained in any other
ndependent set. We denote by MaxInd(g) the set of all the maximal independent sets of g . We say that U is a clique (of
) if every two nodes of U are connected by an edge, and it is a maximal clique (of g) if it is a clique that is not strictly
ontained in any other clique. We denote by MaxClq(g) the set of all the maximal cliques of g . The operation of saturating
(in g) is that of connecting every non-adjacent pair of nodes in U by a new edge. Hence, if h is obtained from g by

aturating U , then U is a clique of h.

.2. Minimal separators

Let g be a graph, and let S be a subset of V(g). Let u and v be two nodes of g . We say that S is a (u, v)-separator if
and v belong to distinct connected components of g \ S. We say that S is a minimal (u, v)-separator if no strict subset
f S is a (u, v)-separator. We say that S is a minimal separator if there are two nodes u and v such that S is a minimal
u, v)-separator. We denote by MinSep(g) the set of all the minimal separators of g . We mention that the number of
inimal separators (i.e., |MinSep(g)|) may be exponential in the number of nodes (i.e., |V(g)|).
Let g be a graph, and let S and T be two minimal separators of g . We say that S crosses T , in notation S ♮g T , if there

re nodes u and v in T such that S is a (u, v)-separator. If g is clear from the context, we may omit it and write simply
♮ T . It is known that ♮ is a symmetric relation: if S crosses T then T crosses S [29,36]. Hence, if S ♮ T then we may also
ay that S and T are crossing. When S and T are non-crossing, then we also say that S and T are parallel.

.3. Chordality and triangulation

Let g be a graph. A cycle of g is a path that starts and ends with the same node. A chord of a cycle c of g is an edge
∈ E(g) that connects two nodes that are non-adjacent in c. We say that g is chordal if every cycle of length greater

han three has a chord. Whether a given graph is chordal can be decided in linear time [41]. Dirac [15] has shown a
haracterization of chordal graphs by means of their minimal separators.

heorem 2.1 (Dirac [15]). A graph g is chordal if and only if every minimal separator of g is a clique.

Rose [40] has shown that a chordal graph g has fewer minimal separators than nodes (that is, if g is chordal then
MinSep(g)| < |V(g)|), and Kumar and Madhavan [31] have shown that we can find all of these minimal separators in
inear time.

heorem 2.2 (Kumar and Madhavan [31]). Let g be a chordal graph. The set MinSep(g) can be computed in linear time.

A triangulation of a graph g is a graph h such that V(g) = V(h), E(g) ⊆ E(h), and h is chordal. The edges in E(h)\E(g) are
ommonly referred to as fill edges. A minimal triangulation of g is a triangulation h of g with the following property: for
very graph h′ with V(g) = V(h′), if E(g) ⊆ E(h′) ⊊ E(h) then h′ is non-chordal (or in other words, h′ is not a triangulation
f g). In particular, if g is already chordal then g is the only minimal triangulation of itself. We denote by MinTri(g) the
et of all the minimal triangulations of g .

.4. Tree decomposition

Let g be a graph. A tree decomposition d of g is a pair (t, β), where t is a tree and β : V(t) → 2V(g) is a function that
aps every node of t into a set of nodes of g , so that all of the following hold.

• Nodes are covered: for every node u ∈ V(g) there is a node v ∈ V(t) such that u ∈ β(v).
• Edges are covered: for every edge e ∈ E(g) there is a node v ∈ V(t) such that e ⊆ β(v).
• Junction-tree (or running-intersection) property: for all nodes u, v, w ∈ V(t), if v is on the path between u and w, then
β(v) contains β(u) ∩ β(w).

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 219

T
o

2

O
i

2

b

r
a
t
ψ

F

Let g be a graph, and let d = (t, β) be a tree decomposition of g . For a node v of t , the set β(v) is called a bag of d.
We denote by bags(d) the set {β(v) | v ∈ V(t)}, and we denote by saturate(g, d) the graph obtained from g by saturating
(i.e., adding an edge between every pair of nodes in) every bag of d.

Jordan [26] shows the following characterization of chordal graphs by means of tree decompositions.

heorem 2.3 (Jordan [26]). A graph g is chordal if and only if it has a tree decomposition d such that every bag of d is a clique
f g.

.5. Enumeration

An enumeration problem P is a collection of pairs (x, Y) where x is an input and Y is a finite set of answers for x, denoted
by P(x). A solver for an enumeration problem P is an algorithm that, when given an input x, produces (or prints) a sequence
of answers such that every answer in P(x) is printed precisely once. A solver for an enumeration problem is also referred
to as an enumeration algorithm.

Johnson, Papadimitriou and Yannakakis [25] introduced several different notions of efficiency for enumeration al-
gorithms, and we recall these now. Let P be an enumeration problem, and let A be solver for P. We say that A runs
in:

• polynomial total time if the total execution time of A is polynomial in (|x| + |P(x)|);
• polynomial delay if the time between printing every two consecutive answers is polynomial in |x|;
• incremental polynomial time if, after printing N answers, the time to print the next (N + 1)st answer is polynomial

in (|x| + N).1

bserve that a solver that enumerates with polynomial delay also enumerates with incremental polynomial time, which,
n turn, implies polynomial total time.

.6. Enumerating the minimal triangulations

A common approach to establish enumeration with polynomial delay is via the technique known as the branch-and-
ound (or the flashlight) method [9]. In this approach, we find a condition ψ over the answers, and then recursively

enumerate all of the answers that satisfy ψ and all of the answers that violate ψ (i.e., satisfy ψ ′
= ¬ψ). Hence, in each

ecursive call, we need to enumerate all the answers that satisfy a conjunction ψ1 ∧ · · · ∧ψm of such conditions. For this
pproach to guarantee polynomial delay, the depth of the recursion should be bounded by a polynomial in the size of
he input. Importantly, in each recursive call, we should be able to test whether there is at least one answer that satisfies
1 ∧ · · · ∧ ψm. Then, in the leaves, we should be able to produce the single answer that satisfies the given constraints.
In this manuscript, we devise an algorithm for enumerating the minimal triangulations: given g , enumerate MinTri(g).

A branch-and-bound attempt to solve this problem would be, say, to apply the conditions of inclusion and exclusion of
fill edges. This approach amounts to testing whether there is a minimal triangulation that contains a given set of edges
and excludes another given set of edges. Unfortunately, it follows from known hardness results of Golumbic, Kaplan and
Shamir [19] that this problem is intractable.

Proposition 2.4. The following decision problem is NP-complete: given g and two sets I and X of node pairs, is there a minimal
triangulation h of g such that I ⊆ E(h) and E(h) ∩ X = ∅?

Proof. Membership in NP is straightforward. To show hardness, we use a reduction from the chordal sandwich problem.
or a graph property Π , the sandwich problem for Π is that of determining, given graphs g and g ′′ with V(g) = V(g ′′)

and E(g) ⊆ E(g ′′), where there exists a graph g ′ such that V(g ′) = V(g), E(g) ⊆ E(g ′) ⊆ E(g ′′), and g ′ satisfies Π . Golumbic
et al. [19] proved the NP-hardness of this problem for various graph properties Π , including chordality. Now, given g and
g ′′, let X be the set of all the node pairs that are not edges of g ′′. The existence of g ′ in the chordal sandwich problem is
equivalent to the existence of a (minimal) triangulation of g that excludes X . □

Hence, we adopt a different approach to enumerating the minimal triangulations, as we describe in the following
sections.

3. Enumerating maximal independent sets on succinct graphs

The main result of this paper is an algorithm for enumerating the minimal triangulations of a graph g . As we explain
in the next section, this problem amounts to enumerating the maximal independent sets of a graph h. It is known that

1 The definition of Johnson et al. [25] requires the delay to be polynomial in the size of the input and the size of the previously produced results
(not just their number N as we define here). However, the definitions are equivalent when the size of each answer is polynomial in that of the
input, as in our case.

220 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

t
h

I

3

T
i

he maximal independent sets of a graph can be enumerated with polynomial delay [25]. However, we cannot instantiate
, since the number of nodes of h can be exponential in the size of g . Hence, known algorithms for enumerating maximal

independent sets cannot be applied to solve our problem. Nevertheless, h possesses some tractability properties that, in
fact, allow us to efficiently enumerate the maximal independent sets of h. In this section we identify these properties
within an abstract framework of succinct graph representations, where a graph may be exponentially larger than its
representation, and we have access to the nodes and edges through efficient algorithms. Mainly, we devise an algorithm
for enumerating the maximal independent sets for such graphs.

3.1. Succinct graph representations

We begin with the formal definition of a succinct graph representation.

Definition 1 (SGR). A Succinct Graph Representation (SGR) is a triple (G, AV, AE), where:

• G is a function that maps every input x, referred to as an instance, to a graph G(x);
• AV is an enumeration algorithm that, given an instance x, enumerates the nodes of G(x);
• AE is a decision algorithm that, given an instance x and nodes v and u of G(x), determines whether v and u are

connected by an edge in G(x).

An SGR (G, AV, AE) is said to be tractably accessible if both the following hold.

1. AV enumerates with polynomial delay.
2. AE terminates in polynomial time.

Here, both polynomials are with respect to |x| (the length of x). Observe that in a tractably accessible SGR, the
(representation) size of every node v of G(x) is polynomial in that of x (since writing v is within the polynomial delay).

For efficient enumeration of MaxInd(G(x)), we need some more tractability conditions.

Definition 2 (Tractable Expansion). A tractably accessible SGR (G, AV, AE) is said to have a tractable expansion if both of
the following conditions hold.

1. There is a polynomial p such that |I| ≤ p(|x|) for all instances x and independent sets I of G(x).
2. There is a polynomial-time algorithm that, given x and an independent set I of G(x), either determines that I is

maximal or returns a node v /∈ I such that I ∪ {v} is independent.

Following is an example of an SGR that is central to this paper.

3.1.1. The separator graph as an SGR
The separator graph of a graph g is the graph that has the set MinSep(g) of minimal separators as its node set, and

an edge between every two minimal separators that are crossing (i.e., S, T ∈ MinSep(g) such that S ♮ T). Throughout this
paper we denote by MSGraph the SGR (G

ms
, A

ms

V , A
ms

E), where:

• G
ms

is a function that maps the representation of a graph g to its separator graph G
ms
(g).

• A
ms

V is an enumeration algorithm that, given a graph g , enumerates its set MinSep(g) of minimal separators. We can
use here a variation of the algorithm of Berry et al. [5] that enumerates MinSep(g) with polynomial delay, as we
describe later in Section 4.2.

• A
ms

E is an algorithm that, given a graph g and two minimal separators S and T , determines whether S ♮ T efficiently
(e.g., by removing S and testing whether T is split along multiple connected components).

n particular, MSGraph is a tractably accessible SGR.

.2. Enumerating maximal independent sets in SGRs

Our main result for this section is the following.

heorem 3.1. Let (G, AV, AE) be a tractably accessible SGR with a tractable expansion. There is an algorithm that, given an
nstance x, enumerates the set MaxInd(G(x)) in incremental polynomial time.

The proof is via the algorithm EnumMIS that is depicted in Fig. 1. This algorithm is an adaptation of the algorithm for
computing full disjunctions in databases [10] that generalizes the problem of enumerating maximal cliques (or maximal
independent sets). In turn, that algorithm was based on an improvement of the algorithm of Lawler et al. [33] for
generating the maximal independent sets in polynomial total time, and all rely on the general idea of reducing the
problem to the input-restricted problem that was later introduced by Cohen et al. [11] for enumerating maximal node

sets that satisfy a hereditary property.

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 221
Fig. 1. Enumerating maximal independent sets of an input x for an SGR (G, AV, AE).

The underlying idea of that algorithm is to construct a graph over the space of the solutions (maximal independent
sets), and traverse the graph in a depth-first-search manner. In the case of maximal independent sets, there is an edge
from J to K if K is obtained from J by adding a new node v, removing the neighbors of v, and greedily extending to a
maximal independent set.

In this section, we describe the algorithm and prove its correctness and efficiency. In the remainder of this section,
we fix a tractably accessible SGR (G, AV, AE) with tractable expansion, and an input instance x. Our goal is to enumerate
MaxInd(G(x)).

3.2.1. Algorithm description
As explained earlier, the algorithm extends every maximal independent set J that it generates in the direction of every

node v that it generates. By extending J in the direction of v we mean producing an arbitrary maximal independent set K
that contains v and all nodes in J that are non-neighbors of v. As long as there are unprocessed sets, they are extended in
the direction of all previously generated nodes. When no unprocessed sets are left, additional nodes are generated, and
the previously processed sets are extended in the direction of the new nodes. Put differently, our algorithm adapts the
traversal approach by restricting the steps to the solutions that are obtained by extending in the direction of the nodes
v that have been produced until that point of time; when a new node v is generated, we revisit the past solutions and
take the steps implied by v.

The algorithm maintains two collections, Q and P , for storing answers (which are maximal independent sets of the
graph G(x)). The algorithm inserts answers into Q, and repeatedly removes (or pops) an answer from Q and processes that
answer (while possibly inserting new answers into Q), until Q is empty. The set P stores the answers that have already
been removed from Q and processed. Importantly, both collections feature membership testing, element removal and
element insertion with a number of comparisons logarithmic in their cardinality (i.e., the number of answers they hold
at the time of the operation). In addition, the algorithm maintains a collection V of the nodes of G(x) generated thus far.
The collection Q is initialized with a single result (which is printed after being generated), which is an arbitrary maximal
independent set. This result is obtained through the procedure Extend(x, I) that extends a given independent set I into a
maximal one. Note that this procedure can be implemented in polynomial time, since (G, AV, AE) has a tractable expansion.
The sets P and V are initialized empty.

The algorithm accesses the nodes of G(x) through an iterator object that is obtained by executing AV(x), and features
two polynomial-time operations:

• Boolean hasNext() determines whether there are additional nodes of G(x) to enumerate.
• next() returns the next node in the iteration.

222 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

O

e
p
m
i
(
(

3

o

L

P

The algorithm applies the iteration of line 7 until Q becomes empty, and then terminates. In every iteration, the
algorithm pops an element from Q, stores it in P (lines 8–9), and then processes it. The algorithm iterates through the
nodes in V , and for each node v it applies (in lines 11–15) what we call extension of J in the direction of v:

1. Generate the set Jv that consists of v and all the nodes in J that are non-neighbors of v, using the algorithm AE for
testing adjacency;

2. Extend Jv into an arbitrary maximal independent set K , again using Extend(x, Jv);
3. If K is in neither Q nor P (meaning it was not printed before), then print K and add it to Q.

bserve that Jv is an independent set, and therefore, it is possible to invoke Extend(x, Jv) with Jv .
Up to this point, the algorithm is very similar to the algorithm of Cohen et al. [10] for computing full disjunctions,

xcept that V does not hold all nodes but only the nodes generated so far. The twist (and the source of extra challenge in
roving correctness and efficiency) is in lines 16–24, where we generate additional nodes and compensate for them being
issing in the previous iterations. In these lines, the algorithm tests whether it is the case that Q is empty and the node

terator has additional nodes to process (line 16). While this is the case, the algorithm repeats the following procedure
lines 17–24): generate the next node using the iterator of AV(x), add it to V , and extend every previously processed result
i.e., the results in P) in the direction of the newly generated node v (as previously described).

.2.2. Correctness and efficiency
The following lemma states the correctness of the algorithm: the algorithm enumerates every element in MaxInd(G(x)),

nly elements in MaxInd(G(x)), and every element is printed exactly once.

emma 3.2. EnumMIS(x) enumerates MaxInd(G(x)).

roof. The algorithm prints only elements that are created by invoking the procedure Extend. Therefore, the algorithm
prints only elements inMaxInd(G(x)). The tests of lines 13 and 22 ensure that whenever an element is printed, this element
has not been seen before. Hence, no element is printed more than once. It is left to prove that every maximal independent
set of G(x) is printed by the algorithm.

Observe the following. When the algorithm terminates we have Q = ∅. Therefore, in the previous iteration the loop
of line 16 could only have terminated due to iterator.hasNext() returning false. Therefore, upon termination V = V(G(g)).

Suppose, by way of contradiction, that there is some maximal independent set H that is not printed by the algorithm.
Let J be a maximal independent set of G(x), among all the printed ones, that contains a maximal number of elements
from H . The set J must exist, since the algorithm prints at least one maximal independent set. Let Hm be the intersection
H ∩ J . Since H ̸= Hm (or else H is not maximal), there is at least one node in H \ J; let v be such a node.

At this point we have established that before the algorithm terminated, (a) the node v has been generated, and (b) J
has been printed. We now branch into two cases, as follows.

1. The set J was inserted into P before the node v was generated. Immediately after v is generated (in line 17), the
set Jv = {v} ∪ {u ∈ J | ¬AE(x, v, u)} will be constructed (in line 20) and expanded to a maximal independent set K
that contains Jv .

2. The node v was generated before J was inserted into P . At the iteration when J is inserted into P , we have v ∈ V , and
so the set Jv = {v} ∪ {u ∈ J | ¬AE(x, v, u)} will be constructed (in line 11) and expanded to a maximal independent
set K that contains Jv .

So, we have established that before the algorithm terminates, the set Jv is generated and expanded to a maximal
independent set K that contains Jv . Furthermore, Hm ∪ {v} ⊆ Jv (since Hm ⊆ J , and does not contain any neighbor of v),
and therefore Hm ∪ {v} ⊆ K . According to the algorithm, one of the following options must hold: (1) K is inserted into Q,
(2) K is already in Q (3) K was in Q in the past and is now in P . Since the algorithm prints every maximal independent
set that is inserted into Q, we get a contradiction to the maximality of Hm. □

We now prove that the algorithm EnumMIS enumerates with incremental polynomial time. We do so in two steps.
We first define an algorithm that is similar to EnumMIS, but with a small twist that makes it easier to prove incremental
polynomial time. Then, we prove a general result that will imply that, if the new algorithm enumerates in incremental
polynomial time then so does EnumMIS.

The new algorithm is similar to EnumMIS, except that each of the print commands (lines 2, 14 and 23) is replaced
with an operation that takes the time of the printing, but is actually void (e.g., printing to /dev/null in Unix). Instead,
each maximal independent set is printed immediately after being removed from Q (line 8). Hence, answers are held until
removed from Q. We refer to the resulting algorithm as EnumMISHold. For theory purposes, it would have been enough
to discuss only EnumMISHold, which is easier to analyze. However, since delaying the results is not required to obtain the
theoretical guarantees, we also discuss EnumMIS where we print the results as soon as we have them. Next, we prove
that EnumMISHold enumerates in incremental polynomial time. Observe that to bound the delay EnumMISHold, we only
need to bound the time between two executions of line 8 of EnumMIS.

Lemma 3.3. EnumMISHold(x) enumerates with incremental polynomial time.

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 223

s
l

|

a
l
i
t

o
t
a
o

E
t
a
w
E

Proof. We begin by showing that the size of the node set V is polynomial in the size of the printed result set P . Whenever
a new node v is inserted into V (line 18), the set Q is empty. The following calls to Extend (line 21) will generate maximal
independent sets containing v. Each of these maximal independent sets is either already in P , or it is inserted into Q (line
24). Therefore, at the end of the iteration of the main loop in which v was inserted into V , all maximal independent sets in
Q contain v. In the next iteration of the main loop, if such an iteration exists, one of these newly generated independent
ets will be printed and inserted into P (line 9). That is, at the beginning of every iteration of the algorithm (specifically,
ine 10), every node v ∈ V belongs to some maximal independent set that has already been printed (and thus part of P).
Since we assume tractable expansion, each independent set in P contains at most p(|x|) nodes, and we can conclude that
V| ≤ p(|x|) · |P|.

We now bound the time between two executions of line 8 of EnumMIS. Line 9 takes polynomial time in |x| (since there
re at most exponentially many independent sets, (G, AV, AE) has a tractable expansion, and operations on P require a
ogarithmic number of comparisons in the cardinality). The number of iterations of line 10 is at most the size of V , which
s polynomial in the number of answers printed so far (due to the above observation). Each operation in that iteration
akes time polynomial in |x|.

The loop of line 16 repeats (at most) until a node that belongs to none of the printed answers is generated. Hence, the
bservation that this number is polynomial in the size of the output, along with the tractable expansion, again implies
hat we iterate a number of times that is polynomial in the number of answers printed so far. The loop of line 19 repeats
t most as many times as the number of answers in P , and all of these have been printed before. Besides the loops, each
f lines 17–24 takes polynomial time in |x|. □

Lemma 3.3 shows that EnumMISHold enumerates with incremental polynomial time. Next, we show the same for
numMIS. The key point is that every answer is printed in EnumMIS no later than it is printed in EnumMISHold. Note that
his holds even though the two algorithms do not necessarily enumerate in the same order (as we make no assumptions
bout the order of removal in Q), since we assume that EnumMISHold spends on void the printing time of EnumMIS. We
ill prove that this suffices to conclude that if EnumMISHold enumerates in incremental polynomial time, then so does
numMIS. We prove here a general result. Let P be an enumeration problem, and let A be a solver for P. For input x and

answer y ∈ P(x), we denote by timeA,x(y) the time in which y is printed. We prove the following theorem.

Theorem 3.4. Let P be an enumeration problem, and let A and B be two solvers for P. Suppose that for all instances x and
for all answers y ∈ P(x) we have timeA,x(y) ≤ timeB,x(y). If B enumerates in incremental polynomial time, then so does A.

Theorem 3.4 is not a vacuous statement, since the order of results may differ between A and B. Furthermore, the
corollary no longer holds when substituting ‘‘incremental polynomial time’’ with ‘‘polynomial delay’’. For example,
imagine two algorithms that print all subsets of an input set. The first prints a new answer after every two time ticks,
while the second prints them after every single time tick, except for the last answer which is printed at the same time
in both algorithms. The first algorithm meets the guarantee of polynomial delay, and even though the second algorithm
prints every answer no later than the first, the second algorithm does not enumerate in polynomial delay as its delay
before the last answer is exponential.

Let P be an enumeration problem, let A be a solver for P, and let x be input for A. If τ is a time tick during the execution
of A(x), then we denote by outA,x(τ) the answers y ∈ P(x) that have been printed before time τ is reached. We have the
following lemma.

Lemma 3.5. Let P be an enumeration problem, and A a solver for P. The following are equivalent.

1. A enumerates in incremental polynomial time.
2. There is a polynomial p such that for all input x and time tick τ it holds that

p(|x| + |outA,x(τ)|) > τ.

Proof. Denote the time of the Nth result by tN .

1 ⇒ 2. If A enumerates in incremental polynomial time, there exists a polynomial p1 such that tN+1 − tN ≤ p1(|x| + N).
Without loss of generality, we assume that p1 is monotone (as every polynomial is upper bounded by some monotone
polynomial, and we can replace p1 with such polynomial). We get the following on the printing time of the Nth result.

tN =

N∑
i=1

ti − ti−1 ≤

N∑
i=1

p1(|x| + i − 1) ≤ N · p1(|x| + N − 1)

In this case we get that for any time τ there exists a polynomial p2 such that the following holds.

τ < t|outA,x(τ)|+1 ≤ (|outA,x(τ)| + 1) · p1(|x| + |outA,x(τ)|) ≤ p2(|x| + |outA,x(τ)|)

2 ⇒ 1. Assume now that p3(|x| + |outA,x(τ)|) > τ for any time τ . Consider the delay after the Nth answer.
tN+1 − tN ≤ tN+1 < p3(|x| + N + 1)

224 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

T

v

W
c
o
e

his shows that there exists a polynomial p4 such that tN+1 − tN < p4(|x|+N), meaning that A enumerates in incremental
polynomial time. □

We can now prove Theorem 3.4.

Proof. Using the characterization of Lemma 3.5, let p be a polynomial such that for all x and τ we have p(|x|+|outB,x(τ)|) >
τ . The condition of the theorem implies that at every time tick τ , the set of answers printed by B is a subset of the set of
answers printed by A, and therefore, |outA,x(τ)| ≥ |outB,x(τ)|. Again since we can assume monotonicity, we conclude that
p(|x| + |outA,x(τ)|) > τ as well. We use Lemma 3.5 to conclude that A enumerates in incremental polynomial time. □

Using the algorithms EnumMIS and EnumMISHold as A and B in Theorem 3.4, respectively, the combination with
Lemma 3.3 implies that EnumMIS enumerates in incremental polynomial time, as claimed.

3.3. Tightness of the algorithm

In the following, we show that the time bounds that EnumMIS achieves are tight since it is not possible to solve the
same problem with polynomial delay under the SETH assumption.

We recall that k-SAT is the satisfiability problem over n variables, where every clause contains at most k literals. SETH
states that there is no algorithm for solving k-SAT in O∗(2(1−ε)n) time for a fixed ε and all k, where the O∗-notation omits
polynomial factors.

Definition 3 (The Strong Exponential Time Hypothesis). For every ε > 0 there exists a k such that k-SAT requires time larger
than 2(1−ε)n where n is the number of variables.

Let (G, AV , AE) be the tractable expansion of a tractably accessible SGR. We denote by SMIS(G,AV,AE) the following
enumeration problem: Given an instance x, enumerate all MaxInd(G(x)).

Proposition 3.6. There exists some tractably accessible SGR with a tractable expansion (G, AV , AE), such that SMIS(G,AV,AE)
cannot be enumerated with a polynomial delay, assuming the SETH.

Proof. Let k ≥ 3, and let φ be an instance of k-SAT with var(φ) = {x1, . . . , xn} (for readability, we assume that n ≥ 2 is
even). We will show that a polynomial delay algorithm for enumerating MaxInd(G(x)) will decide satisfiability of φ within
time 2n/2

· poly(|φ|). This is true for any choice of k, which is not possible assuming the SETH.
We first describe the SGR (G, AV , AE). For any string x that is not a k-SAT formula, G(x) = ∅. Otherwise, given a

k-SAT instance φ, we define G(x) as follows: The set of vertices represents all possible truth assignments on n
2 variables

twice, with two additional nodes ⊥A and ⊥B. Intuitively, VA corresponds to all possible truth assignments on the variables
x1, . . . , x n

2
, and VB corresponds to all possible truth assignments on the remaining variables x n

2 +1, . . . , xn. That is,

VA = {A} × {0, 1}
n
2

VB = {B} × {0, 1}
n
2

V (G(φ)) = VA ∪ VB ∪ {⊥A} ∪ {⊥B}.

To define the set of edges, we first start with edges between the set VA and VB. There is an edge (u, v) for u ∈ VA,
∈ VB if and only if u and v together encode a truth assignment that does not satisfy φ. Moreover, we also add all edges

between nodes in VA, between nodes in VB and certain connections to the nodes ⊥A and ⊥B as follows:

Eunsat = {{u, v}|∃a1, . . . , an ∈ {0, 1} s.t.
u = (A, a1, . . . , a n

2
) ∈ VA, v = (B, a n

2 +1, . . . , an) ∈ VB and φ(a1, . . . , an) = false}.

E(G(φ)) = Eunsat ∪ {⊥A,⊥B} ∪ {{u, v} | u, v ∈ VA} ∪ {{u, v} | u, v ∈ VB} ∪ {{u,⊥A} | u ∈ VA} ∪ {{u,⊥B} | u ∈ VB}

e first note that this SGR is tractably accessible. Indeed, the set of nodes can be enumerated with a polynomial (even
onstant) delay, and for any u, v ∈ G(φ), we can check whether {u, v} ∈ E(G(φ)) in polynomial time, since evaluation
f any k-SAT formula can be done within polynomial (or even linear) time. To show that this SGR also has a tractable
xpansion, we note that the set of maximal independent sets of G(φ) is given as the union of the sets IA, IB and Isat with

IA = {{u,⊥B} | u ∈ VA}, IB = {{u,⊥A} | u ∈ VB} and
Isat = {{u, v}|∃a1, . . . , an ∈ {0, 1} s.t. u = (A, a1, . . . , a n) ∈ VA, v = (B, a n

+1, . . . , an) ∈ VB and φ(a1, . . . , an) = true}.

2 2

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 225

s
(

t

Every maximal independent set of G(φ) is of size 2, satisfying the first condition of a tractable expansion. For the
econd condition, we note that every subset I of V (G) of size one can be extended trivially to a maximal independent set
by adding either ⊥A, ⊥B, or in case that I ⊂ {⊥A,⊥B} some arbitrary element from VA or VB), and for any subset of size
two, we can check whether I is (maximally) independent within polynomial time.

Note that φ is satisfiable if and only if MaxInd(G(x)) contains more than the sets IA and IB. Assume that we can
enumerate MaxInd(G(x)) with a polynomial delay. We can output 2 ·2

n
2 many solutions within time 2

n
2 ·poly(|φ|), meaning

hat we can decide whether there are more than 2 · 2
n
2 many maximal independent sets of G(φ) within in the same time

bound. Since φ is satisfiable iff G(φ) has at least 2 · 2
n
2 + 1 maximal independent sets, we are done. □

3.4. Note on space usage

We conclude this section with a discussion on the space usage. Note that our algorithm may reach an exponential space
as it relies on remembering all past answers to avoid the production of duplications. This cost is already incurred in the
enumerators of maximal independent sets that form the basis of our algorithm [10,11,33]. However, several algorithms
for enumerating maximal independent sets (and more generally maximal sets w.r.t. different properties) guarantee both
polynomial delay and polynomial space, including the reverse search [3], the algorithm of Conte et al. [12], and the
proximity search [13]. However, it is not clear to us how these algorithms can be adapted to enumerating the maximal
independent sets of an SGR in a manner that limits the space, given that the set of nodes is not known upfront (and
in light of Proposition 3.6). Moreover, note that the exponential space of our algorithm is also required for storing the
(possibly exponential number of) past generated nodes of the SGR.

A natural question then remains open: can Theorem 3.1 be improved to require only polynomial space (at least when
ignoring the space used by invoking the SGR functions)? Particularly, we leave open the question of whether and how the
aforementioned polynomial-space algorithms can be adapted to enumerating the maximal independent sets of an SGR,
and whether we can avoid storing all produced nodes. It appears that further assumptions on the SGR are required to this
aim, and establishing these assumptions is left as a future direction.

4. Enumerating minimal triangulations

In Section 3.1.1 we introduced MSGraph and claimed that it is an SGR. In this section, we will use known results to
reduce the problem of enumerating the minimal triangulations of a graph to the problem of enumerating the maximal
independent sets for MSGraph. We will describe how to enumerate the nodes of MSGraph with polynomial delay,
concluding that it is in fact an SGR. We will further show that MSGraph has a tractable expansion (Definition 2), and
therefore Theorem 3.1 can be applied to conclude that the minimal triangulations can be enumerated in incremental
polynomial time.

4.1. Reduction

We use the following notation. Let g be a graph. We denote by ClqMinSep(g) the set of minimal separators S of g , such
that S is a clique of g . Let ϕ be a subset of MinSep(g). We denote by g[ϕ] the graph that results from saturating the minimal
separators in ϕ.

Parra and Scheffler [36] have shown the following connection between minimal triangulations and maximal sets of
pairwise-parallel minimal separators (that is, every two minimal separators in the set are non-crossing).

Theorem 4.1 (Parra and Scheffler [36]). Let g be a graph.

1. If ϕ is a maximal set of pairwise-parallel minimal separators of g, then g[ϕ] is a minimal triangulation of g, and
MinSep(g[ϕ]) = ϕ.

2. If h is a minimal triangulation of g, then the set ϕ = MinSep(h) is a maximal set of pairwise-parallel minimal separators
in g, and h = g[ϕ].

Theorem 4.1, combined with Theorem 2.2, gives the desired reduction in the following corollary. Recall that the graph
G

ms
(g) is defined in Section 3.1.1, as part of the SGR MSGraph = (G

ms
, A

ms

V , A
ms

E).

Corollary 4.2. For a graph g, there is a polynomial-time-computable bijection between the following two sets:

• MaxInd(G
ms
(g)), that is, the set of all maximal sets of pairwise-parallel minimal separators of g.

• MinTri(g), that is, the set of all minimal triangulations of g.

Hence, it suffices to prove that MSGraph has a tractable expansion, which we do next.

226 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

4

Fig. 2. Enumerating MinSep(g) with polynomial delay (a variation of the algorithm by Berry et al. [5]).

.2. Enumerating minimal separators

We now describe a variation of the algorithm of Berry et al. [5] that, given a graph g , enumerates its set MinSep(g) of
minimal separators. Their algorithm enumerates with polynomial total time, and with a simple change (that we explain
next) can enumerate with polynomial delay. Our variation is depicted in Fig. 2. There, for v ∈ V(g) we denote by N(v)
the set of neighbors of v. For U ⊆ V(g) we denote by N(U) the set of neighbors of nodes in U , excluding the nodes of U
themselves; that is,

N(U) def
==

(⋃
v∈U

N(v)
)

\ U .

We also denote by C (U) the set of connected components of the graph g \U (the graph obtained from g by removing all
the nodes of U).

The algorithm remains intrinsically the same as that of Berry et al. [5]. Minimal separators are considered as
neighborhoods of connected components. The algorithm finds minimal separators contained in a set U ⊆ V(g) by taking
the neighborhoods of the connected components of g \ U , that is, N(C) for all C ∈ C (U). Initially, the minimal separators
that are contained in the neighborhoods of single nodes are generated (lines 3–5). Then, every previously generated
minimal separator S is processed to produce more minimal separators that are close to S (lines 7–12). For every node
v in the minimal separator S, it produces minimal separators that are contained in S ∪ N(v).

Our modification is in the data structures and the time of printing answers. In Fig. 2, Q and P play the role of S \ T

and T of the original algorithm [5], respectively. There, S holds all minimal separators generated, and T is a subset
that holds the separators that were processed. The easy access to the separators yet to be processed (i.e. S \ T), along
with printing answers when processed (in line 13, rather then when revealed in line 11), provides the polynomial delay.
Correctness is derived directly by the correctness of the original algorithm, and the polynomial delay can be easily verified.
In particular, the time between two consecutive results is O(|V(g)|3).

4.3. Tractable expansion

Recall that Rose [40] proved that a chordal graph has fewer minimal separators than nodes. Combined with this result,
Theorem 4.1 gives the first of the two conditions of Definition 2.

Corollary 4.3. Let g be a graph. If I is a (maximal) independent set of G
ms
(g), then |I| < V(g).

Proof. Suppose that I is a maximal set of pairwise-parallel minimal separators of g . Then by Theorem 4.1, h = g[I] is a
minimal triangulation of g , and MinSep(h) = I . The graph h is chordal, hence from Rose [40] we get that |MinSep(h)| <
|V (h)| = |V (g)|. □

We now turn to proving the second condition of Definition 2. We do so by describing a general procedure for extending
a set of pairwise-parallel minimal separators of a graph g to a maximal such set. Algorithm Extend of Fig. 3 can apply any
known polynomial time triangulation heuristic, referred to as Triangulate, as a black box. It uses the following procedures
as subroutines.

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 227
Fig. 3. An algorithm for extending a set ϕ of pairwise-parallel minimal separators.

• Saturate(g, S) receives a graph g and a set S ⊆ V (g) of vertices, and saturates S (i.e., modifies g such that S becomes
a clique).

• Triangulate(g) receives a graph g and returns a (not necessarily minimal) triangulation g ′ of g . We assume that this
procedure runs in polynomial time. (For example, a naive implementation would be to add every possible edge; later
we discuss smarter alternatives.)

• MinTriSandwich(g, g ′) receives a graph g and a triangulation g ′ of g , and returns a minimal triangulation of g . We
note that, using one of the known algorithms [7,14,37], this procedure runs in time that is polynomial in the size of
the graph.

• ExtractMinSeps(h) receives a chordal graph h and returns its set of minimal separators. Using the algorithm of
Kumar [31], the execution time of this procedure is linear in h.

Extend takes as input a graph g and a set ϕ of pairwise-parallel minimal separators. It then proceeds by saturating
the separators in ϕ, resulting in g[ϕ]. At this stage it passes g[ϕ] to the triangulation heuristic Triangulate. We note that
Triangulate does not have to produce a minimal triangulation. This is important since it allows us to incorporate any
method for triangulation or tree decomposition. (We discuss in detail the translation between triangulations and tree
decompositions in Section 5.)

The problem of transforming a non-minimal triangulation into a minimal one is called the minimal triangulation
sandwich problem [24]. Various polynomial-time algorithms for this problem exist [14,37], and these were reported to
perform well in practice [7].

So, at this stage we have a minimal triangulation h of g[ϕ]. Theorem 4.4 (that we give in the next section) shows that
h is also a minimal triangulation of g . Lemma 4.5 (also in the next section) shows that the set of minimal separators of
h contains ϕ, which is essential as we need to extend ϕ. Finally, we can apply the algorithm of Kumar [31] to extract the
minimal separators of the (chordal) graph h in linear time.

4.3.1. Correctness
To prove correctness of the algorithm Extend of Fig. 3, we need the following result by Heggernes [24].

Theorem 4.4 (Heggernes [24]). Given a graph g, let ϕ be an arbitrary set of pairwise-parallel minimal separators of g. Obtain
a graph g[ϕ] by saturating each separator in ϕ.

1. ϕ ⊆ ClqMinSep(g[ϕ]), that is, ϕ consists of clique minimal separators of g[ϕ].
2. ClqMinSep(g) ⊆ MinSep(g[ϕ]); that is, every clique minimal separator of g is a (clique) minimal separator of g[ϕ].
3. Every minimal triangulation of g[ϕ] is a minimal triangulation of g.

The next lemma builds on Theorems 4.1 and 4.4.

Lemma 4.5. Let g be a graph, and ϕ a set of pairwise-parallel minimal separators of g. Let h be a minimal triangulation of
g[ϕ]. Then ϕ ⊆ MinSep(h).

Proof. By Part 1 of Theorem 4.4 we have that ϕ ⊆ ClqMinSep(g[ϕ]). Since h is a minimal triangulation of g[ϕ] then by
Part 2 of Theorem 4.1, h is the result of saturating a maximal set, say ϕ′, of pairwise-parallel minimal separators of g[ϕ].
Therefore, by Part 2 of Theorem 4.4 we have ClqMinSep(g[ϕ]) ⊆ MinSep(h). This implies that ϕ ⊆ MinSep(h), as claimed. □

We then conclude the correctness of the algorithm.

Lemma 4.6. Let ϕ be a set of pairwise-parallel minimal separators of a graph g. Extend(g, ϕ) returns a maximal set I of
pairwise-parallel minimal separators of g such that ϕ ⊆ I . Furthermore, the algorithm terminates in polynomial time.

Proof. Assuming correctness of procedures Triangulate, and MinTriSandwich, the graph h is a minimal triangulation of
g[ϕ]. By Part 3 of Theorem 4.4, we have that h is a minimal triangulation of g . Consequently, from Part 2 of Theorem 4.1
we get that MinSep(h) = I is a maximal set of pairwise-parallel minimal separators of g . By Lemma 4.5 it holds that
ϕ ⊆ MinSep(h), making I an extension of ϕ. All of the procedures in Fig. 3 run in time that is polynomial in the size of

the graph making it polynomial as well. □

228 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

b
i

c
d
d
b

5

e

T
t
b

C

T
p

Fig. 4. A graph g and tree decompositions d1 , d2 and d3 of g . The decomposition d1 is proper, but d2 and d3 are subsumed by d1 , and hence,
improper.

From Corollary 4.3 and Lemma 4.6 we get the main result of this part.

Theorem 4.7. The SGR MSGraph has a tractable expansion of independent sets.

This theorem allows us to establish the main result of this paper.

4.4. Main result

From Theorems 3.1 and 4.7 we conclude that it is possible to enumerate the maximal independent sets of MSGraph
in incremental polynomial time. Applying the bijection of Corollary 4.2, we get the main result of this paper.

Corollary 4.8. Given a graph, the minimal triangulations can be enumerated in incremental polynomial time.

In the next section, we will use this result for enumerating tree decompositions.

5. Enumerating the proper tree decompositions

In this section we define the notion of a proper tree decomposition, which is essentially a tree decomposition that is,
intuitively, not deemed redundant due to another tree decomposition. Our ultimate goal is to enumerate only the proper
tree decompositions, and we will show that this translates to enumerating the minimal triangulations.

5.1. Proper tree decompositions

Let d1 and d2 be two tree decompositions of a graph g . We say that d1 and d2 are bag equivalent, denoted d1≡bd2, if
bags(d1) = bags(d2). We denote by d1 ⊑ d2 the fact that for every bag b1 ∈ bags(d1) there exists a bag b2 ∈ bags(d2) such
that b1 ⊆ b2.

Let g be a graph, and let d and d′ be tree decompositions of g . We say that d′ strictly subsumes d if d′
⊑ d and

ags(d) ̸⊆ bags(d′) in multiset notation (i.e., some bag appears in d more times than it appears in d′). A tree decomposition
s proper if it is not strictly subsumed by any tree decomposition, and it is improper otherwise.

Fig. 4 shows examples of proper and improper tree decompositions. It can be shown that d1 is proper (e.g., since every
lique of g is contained in some bag of d, as we prove in Proposition 5.3). But d2 is not proper, since it is subsumed by
1; that is, every bag of d1 is contained in some bag of d2, but the bag {1, 2, 3, 4} is not a bag of d1. For the same reason,
2 is subsumed also by d3. Finally, d3 is subsumed by d1 since every bag of d1 is a bag of d3, but the bag {3, 4} is not a
ag of d1.

.2. Enumeration

The main result of this section is the following, showing that enumerating the proper tree decompositions reduces to
numerating the minimal triangulations.

heorem 5.1. Let g be a graph. There is a bijection M between MinTri(g) and the equivalence classes of ≡b over the proper
ree decompositions of g. Moreover, given a minimal triangulation h of g, the proper tree decompositions in the class M(h) can
e enumerated with polynomial delay.

Combined with Corollary 4.8, we get the following.

orollary 5.2. The set of proper tree decompositions of a given graph can be enumerated in incremental polynomial time.

Next, we discuss the proof of Theorem 5.1, and in particular show how M is defined. We first need some propositions.
he following proposition is a folklore, and it is using the fact that every collection of subtrees of a tree satisfies the Helly

roperty [18].

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 229
Fig. 5. Obtaining a strictly subsuming tree decomposition d′ given a tree decomposition d with B ⊆ C .

Proposition 5.3. If d is a tree decomposition of a graph g, then every clique of g is contained in some bag of d.

Proof. We use the fact that the junction-tree property of a tree decomposition is equivalent to the property that for every
node v of the graph, the bags of the tree decomposition that contain v form a (connected) subtree. Denote d = (t, β) and
let C be a clique of g . Every node v in C defines a subtree of t that is induced by the bags that contain v. Since d covers
the edges of g , every two nodes in C must share some bag in d, and hence, their subtrees must share a vertex. It is known
that every collection of subtrees of a tree satisfies the Helly property [18]: if every two subtrees share a vertex, then there
exists a vertex that is shared by all the subtrees. In particular, there exists a vertex in d common to all of these subtrees;
this shared node corresponds to a bag that contains C . □

The following proposition states that in a proper tree decomposition, there is no containment among bags.

Proposition 5.4. If d is a proper tree decomposition of a graph g, then bags(d) is an antichain w.r.t. set inclusion (that is,
no bag contains another).

Proof. We need to show that a proper tree decomposition cannot have two bags with one contained in the other. Assume,
by way of contradiction, that d is a proper tree decomposition of g with two bags B, C ∈ bags(d) where B ⊆ C . Let A be
the second bag in the path from B to C . Since d is a tree decomposition and A is on the path from B to C , we get that
B = B ∩ C ⊆ A.

Define d′ to be the graph obtained from d by removing B and connecting A to all other neighbors of B, as illustrated
in Fig. 5. We will show that d′ is a tree decomposition for g . The first two properties of the tree decomposition still hold
because A contains B. Consider the path between two bags α and β of d′. If the path between them is the same as in d,
the third property still holds. If it changed, then the path used to go through B, and the only new bag that may appear in
this path is A. In this case, α ∩ β ⊆ B ⊆ A, and the third property holds as well. We have found a tree decomposition d′

for g that strictly subsumes d, hence d is improper, and this is a contradiction. □

From Theorem 2.3, the following easily follows.

Proposition 5.5. If d is a tree decomposition of a graph g, then saturate(g, d) is a triangulation of g.

Proof. According to the definitions, d is a tree decomposition of saturate(g, d). Hence, since every bag of d is a clique of
saturate(g, d), it follows from Theorem 2.3 that saturate(g, d) is chordal. □

The definition of M is based on Lemma 5.6, stating that a chordal graph g has a single proper tree decomposition, up
to the equivalence ≡b, with the set of bags being precisely the set of maximal cliques.

Lemma 5.6. If g is a chordal graph and d is a proper tree decomposition of g, then bags(d) = MaxClq(g).

Proof. According to Proposition 5.3, every clique of g is contained in some bag of d, and according to Theorem 2.3, g has
some tree decomposition, say d′, where all the bags are cliques of g . So we have that d′

⊑ d. If bags(d) ̸⊆ bags(d′), then
d′ strictly subsumes d, in contradiction to the fact that d is proper. Hence bags(d) ⊆ bags(d′), meaning that the bags of
d are cliques of g . It thus follows that every maximal clique is a bag of d, or in notation, MaxClq(g) ⊆ bags(d). Finally,
Proposition 5.4 states that the bags of d are an antichain w.r.t. set inclusion, and hence, bags(d) ⊆ MaxClq(g). We conclude
that bags(d) = MaxClq(g), as claimed. □

Based on Lemma 5.6, we define M to be the function that maps every h ∈ MinTri(g) to the equivalence class of the
proper tree decomposition of h. Lemma 5.7 states that M has the required properties.

Lemma 5.7. Let g be a graph. The mapping M is a bijection between MinTri(g) and the equivalence classes of ≡b over the
proper tree decompositions of g.

230 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

P

M
d
p
A
m
F
t
h
o
b

M
t
M

M
o
d

w
r
e
c
d

t
o
c
a

e
b
t
t
i
a

t
w
c
F
t

6

l
g
i
a
t
s
s

6

roof. We show that M has the correct range, that it is surjective, and that it is bijective.

has a proper range. Let h be a minimal triangulation of g , and let d be a proper tree decomposition of h in M(h). Then
is also a tree decomposition of g , as the three properties of a tree decomposition still hold. We need to show that d is a
roper tree decomposition of g . According to Lemma 5.6, we have bags(d) = MaxClq(h), and therefore, saturate(g, d) = h.
ssume, by way of contradiction, that d is improper. Then d is strictly subsumed by some tree decomposition d′ of g ,
eaning that d′

⊑ d. Let h′ be the graph saturate(g, d′). From Proposition 5.5 it follows that h′ is a triangulation of g .
rom d′

⊑ d and the fact that every bag of d is a clique of h, we conclude that E(h′) ⊆ E(h). And since h is a minimal
riangulation, we get that h = h′. We can now conclude that d′ is also a tree decomposition of g: the junction-tree property
olds and the nodes are covered since it is a tree decomposition of g , and the edges are covered since those are the edges
f h′ that are covered by its definition. We get that both d and d′ are tree decompositions of h, and d is strictly subsumed
y d′, which contradicts the fact that d is a proper tree decomposition of h.

is injective. Let h1 and h2 be two minimal triangulations such that h1 ̸= h2. Without loss of generality, assume that
he edge {u, v} is in h1 but not in h2. The nodes u and v are part of some maximal clique of h1, so they share a bag in
(h1). But they are not part of any clique of h2, so they do not share any bag in M(h2). Therefore, M(h1) ̸= M(h2).

is surjective. Given a proper tree decomposition d of g , we need to show that there exists a minimal triangulation h
f g such that d ∈ M(h). Consider the graph h = saturate(g, d). We will show that h is a minimal triangulation, and that
belongs to M(h).
We first show that h is a minimal triangulation of g . According to Proposition 5.5, h is a triangulation of g . Assume, by

ay of contradiction, that h is not minimal. Then there exists a minimal triangulation h′ of g that is obtained from h by
emoving some edges; denote one of these edges by e. Consider a tree decomposition d′

∈ M(h′). The clique containing
in h is not a clique in h′, and therefore bags(d) ̸⊆ bags(d′). Also note that since h′

⊆ h, every maximal clique of h′ is
ontained in some maximal clique of h, and therefore d′

⊑ d. Then d′ strictly subsumes d, in contradiction to the fact that
is proper.
Finally, we need to show that d is a proper tree decomposition of h. The nodes of h are covered in d, and the junction-

ree property holds, since d is a tree decomposition of g . The new edges of h are covered in d since they are all a result
f saturation of the bags of d. So d is a tree decomposition of h, and we claim that it is proper. Assume, by way of
ontradiction, that d is not a proper tree decomposition of h, then the tree decomposition d′ that strictly subsumes it is
lso a tree decomposition for g , contradicting the fact that d is a proper tree decomposition of g . □

To complete the proof of Theorem 5.1, we explain how the proper tree decompositions in the class M(h) can be
numerated with polynomial delay for h ∈ MinTri(g). Jordan [26] shows that, given a chordal graph h, a tree over the
ags that represent the maximal cliques of h is a tree decomposition if and only if it is a maximal spanning tree, where
he weight of an edge between two bags is the size of their intersection. Hence, this enumeration problem is reduced
o enumerating all maximal spanning trees, which can be solved in polynomial delay [43]. Since Gavril [17] showed that
n chordal graphs the number of maximal cliques of h is at most the number of nodes of h, we have a polynomial delay
lgorithm for enumerating the tree decompositions. This concludes the proof.
According to Corollary 5.2, we can enumerate all proper tree decompositions with incremental polynomial time. Note

hat this section also implies another alternative: we can enumerate only one representative of every equivalence class
ith the same complexity guarantees. That is, we can enumerate one proper tree-decomposition of each possible bag
onfiguration with incremental polynomial time. The choice of which variation to use depends on the application at hand.
or some applications, different tree-decompositions with the same bags may be of different quality, while for others only
he bags matter.

. Experimental evaluation

We now describe an experimental study over an implementation of our enumeration algorithm for minimal triangu-
ations, namely the algorithm EnumMIS of Fig. 1 for the SGR (G

ms
, A

ms

V , A
ms

E), calling the procedure Extend of Fig. 3. The
oal of the experimental study is twofold. First, we wish to understand how practical the execution cost of the algorithm
s for enumerating many minimal triangulations (and tree decompositions). Second, we wish to study the ability of the
lgorithm to produce many high-quality triangulations, given an underlying triangulation algorithm (for Extend), and even
o improve upon standard quality measures of the underlying algorithm itself. In Section 6.1 we describe the experimental
etup, in Section 6.2 we report on the efficiency of the algorithm in terms of its delay, and in Sections 6.3 and 6.4 we
tudy the quality of the results.

.1. Experimental setup

We first describe the general setup for our study.

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 231
6.1.1. Implementation and hardware
We implemented all algorithms in C++, with STL data structures.2 All experiments were carried out on a 2.6 GHz

dual-core laptop with 8 GB of RAM running Windows 10 professional.

6.1.2. Triangulation algorithms
We implemented two well known triangulation algorithms as the procedure Triangulate in line 1 of the procedure

Extend (Fig. 3). Both algorithms apply the general technique of node-elimination ordering [35], where nodes are eliminated
from the graph in turn, by adding a subset of fill edges between the eliminated node and its neighbors in the (leftover)
graph. Both algorithms guarantee a minimal triangulation (hence there was no need to call MinTriSandwich(g[ϕ], gt) in
line 2 of Extend).

• MCS_M [4]. This is an extension of the Maximum Cardinality Search (MCS) algorithm for recognizing chordal
graphs [41], which finds a minimal elimination ordering along with its corresponding minimal triangulation.

• LB_TRIANG [6]. This algorithms guarantees minimality of the triangulation by adding only a subset of the fill edges at
each of the elimination steps, and allows for complete flexibility in determining the elimination order. We applied
the min fill heuristic that selects, at each iteration, the node whose elimination results in the smallest number of
edges to add.

6.1.3. Datasets
We used three types of datasets: probabilistic graphical models, database queries, and random (synthetic) graphs. For

the first type, we used the following benchmark networks from the UAI probabilistic inference challenge.3 The datasets
Alchemy and DBN from the challenge are not described here as each of their graphs had only one or two minimal
triangulations, and the enumeration ended instantaneously.

• Promedas: ‘‘PRObabilistic MEdical Diagnostic Advisory System’’. The Promedas Markov networks represent medical
diagnosis cases, and consist of binary variables that were converted from layered noisy-or Bayesian networks. The
dataset includes 33 graphs with 26-1039 nodes and 36-1696 edges, and many of them are considered too difficult
for exact inference.4

• Object detection: Markov Random Fields for object-detection tasks in computer vision. It includes 79 instances of
connected networks, each containing 60 nodes and between 135 to 180 edges.

• Image segmentation: Bayesian networks generated from image-segmentation tasks. It includes 6 graphs with
226-235 nodes and 617-647 edges.

• Grids: An N × N grid network. Such networks that are common in image processing [8], and networks that model
problems such as medical diagnosis and object detection. This dataset includes 8 grids with N = 10 and N = 20,
resulting in graphs with 100 or 400 nodes, and 180-760 edges.

• Pedigree: Bayesian networks used to model genetic information [16]. The data set includes 3 graphs, each has 385
nodes and 930 edges.

• CSP: Constraint-satisfaction problems. There are 3 instances in the dataset, with 67-100 nodes and 226-619 edges.

The datasets of second and third types are as follows.

• TPC-H: Graphs induced from TPC-H. These are the Gaifman (primal) graphs of joins for implementing the TPC-H
benchmark queries in LogiQL, the Datalog variant of LogicBlox [1].5 The queries include up to 22 nodes, and up to
46 edges, and their treewidth is up to 7.

• Random: Random G(n, p) graphs in the Erdős–Rényi model. The number of nodes is n and every pair of nodes is
connected by an edge with probability p (independently). We generated 54 random graphs for varying n between
30 and 200, and three values of p: 0.3 (sparsest), 0.5 and 0.7 (densest).

As a baseline approach, we implemented the algorithm of DunceCap [42] for generating all of the generalized hypertree
decompositions (each involving an underlying tree decomposition). However, this algorithm is designed to handle small
join queries and to span a much greater space of objects (namely, the generalized hypertree decompositions). In particular,
on the TPC-H dataset we observed that on the smaller queries our algorithm is faster by 3 to 4 orders of magnitude, and
on some of the larger queries (Q7 and Q9) we could not get their algorithm to terminate in less than two hours (while
our algorithms terminated in a few seconds, as we later discuss). Therefore, we decided to exclude comparisons to this
implementation. As of today, we are not aware of any other published algorithms for enumerating (minimal) triangulations
or tree decompositions with guarantees of correctness (completeness).

2 The code is available online: https://github.com/NofarCarmeli/MinTriangulationsEnumeration.
3 http://www.cs.huji.ac.il/project/PASCAL/showNet.php.
4 http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks.
5 The queries, provided to us by LogicBlox, are used for benchmarking the engine.

https://github.com/NofarCarmeli/MinTriangulationsEnumeration
http://www.cs.huji.ac.il/project/PASCAL/showNet.php
http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks

232 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236
Fig. 6. Average delay (in seconds) for the two triangulation algorithms over the probabilistic-graphical-model benchmarks: Object Detection (•),
Segmentation (•), Pedigree (•), Grids (•), Promedas (•), CSP (•).

6.2. Execution cost

In what follows we report on the delay of the two variants of the implementation, corresponding to the two
triangulation algorithms LB_TRIANG and MCS_M.

6.2.1. Probabilistic graphical models
We measured the average delay between minimal triangulation printouts for the network datasets from the UAI

challenge. The measurements were conducted during 30 minutes executions. 5 of the graphs in Promedas, and one graph
of CSP completed the enumeration within this time. We plotted the delay of the other graphs against the number of their
edges. The plots, corresponding to the two minimal triangulation algorithms LB_TRIANG and MCS_M, are presentedin
Figs. 6a and 6b, respectively, using log-scale. Overall, we see that the delay increases with the size of the graph. However,
this trend varies between the different benchmarks. While this dependency is apparent for the Promedas data set, the
average delay for object detection has little correlation with the number of edges in the graph.

6.2.2. Random graphs
We measured the average delay (in seconds) between the printout of consecutive minimal triangulations during a

30 min execution. The plots in Figs. 7a and 7b show the average delay vs. the size of the graph for the two variants. We
can see that the delay increases with the size of the graph, and that the general trend is that the delay is larger for denser
graphs. We also see that for LB_TRIANG the delay is generally longer than for MCS_M.

6.2.3. Database queries
We evaluated our enumeration algorithm over a set of 22 queries from the TPC-H dataset. The graphs of these queries

are quite small when compared to the UAI datasets (< 23 nodes). Moreover, half of these graphs are chordal to begin with
(i.e., have only one minimal triangulation—the graph itself), and hence, irrelevant for us. Except for two queries, all of the
rest had at most 5 minimal triangulations. The remaining two queries are Q7 (Volume shipping Query) and Q9 (Product
Type Profit Measure Query), and they have a considerable number of minimal triangulations: 700 and 588, respectively.
When considering the minimum-width tree decomposition for each of the queries, the largest bag was of size 8; this is
due to a relation of arity 8 in the query. In fact the largest bag in each of the queries had at most two variables more than
the size of the largest relation. The execution for all 22 queries completed within 5 s.

In one of the queries we compared the delays for two modes of printing: the one of EnumMIS and the one of
EnumMISHold that prints upon extraction from the queue, as described in Section 3.2.2. We refer to the former as UG

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 233
Fig. 7. Average delay over 54 graphs randomly generated from the Erdős–Rényi G(n, p) for varying n and p.

Fig. 8. Delay behavior in two printing modes: UG (Upon Generation, as in EnumMIS), and UP (Upon Pop, as in EnumMISHold).

(Upon Generation) and to the latter as UP (Upon Pop). Recall that both modes guarantee incremental polynomial time
(Theorem 3.4). This gives us a sense of the practical impact of printing the solutions as soon as possible compared to
holding the solutions to attain an easy-to-prove incremental polynomial time algorithm. The results are in Fig. 8. While
the dotted line (of UG) has bursts of high-frequency prints followed by periods where no new triangulation is created,
the solid line (UP) has a more steady pace as can be seen by the constant slope in Fig. 8. As expected, despite the fact
that the last result of UG is printed earlier that of UP, termination is at the same time in both modes, as the algorithm
still needs to check that there are no additional minimal triangulations.

6.3. Quality

In what follows we report on the quality of the generated minimal triangulations in terms of two standard measures
of quality for triangulations and tree decompositions: fill and width. Fill refers to the total number of edges added in order
to make the resulting graph chordal, while width refers to the size of the largest clique in the generated triangulation
(minus one).6 The natural benchmark for the quality of the triangulations is the first result our enumeration returns, as
it is the result we would get by running the minimal triangulation algorithm we used, on the original input graph.

6 Recall that is NP-hard to find a triangulation that minimizes the fill [44] or the width [2].

234 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

i
f
(
(
i

q
w
t
t
P
n

6

f
t
i
i
t
t

E
c
a

Table 1
Width statistics on generated triangulations following 30 min execution.
Dataset #trng min-w #≤w1 (%) %w↓ (max)

MCS_M

Promedas (28) 11064.5 25.8 3713.6 (33.6%) 2.2 (15.2)
Grids (8) 40319.8 18.4 93.6 (0.2%) 0.0 (0.0)
Obj. Detection (79) 100349.9 6.1 42743.9 (42.6%) 0.4 (12.5)
Segmentation (5) 12836.5 23.0 20.5 (0.2%) 0.0 (0.0)
Pedigree (3) 7789.0 31.7 3087.3 (39.6%) 0.0 (0.0)
CSP (2) 29450.5 16.5 26741.5 (90.8%) 13.2 (26.3)

LB_TRIANG

Promedas (28) 4220.7 18.6 2352.0 (55.7%) 1.9 (16.7)
Grids (8) 13881.3 24.5 1273.0 (9.2%) 3.0 (8.7)
Obj. Detection (79) 33295.4 5.8 15709.3 (47.2%) 0.0 (0.0)
Segmentation (5) 5174.2 21.8 2141.8 (41.4%) 10.3 (20.7)
Pedigree (3) 3646.0 23.7 3227.7 (88.5%) 5.3 (14.8)
CSP (2) 11772.0 16.5 3760.5 (31.9%) 0.0 (0.0)

Table 2
Fill statistics on generated triangulations following 30 min execution.
Dataset #trng min-f #≤f1 (%) %f↓ (max)

MCS_M

Promedas (28) 11064.5 3353.4 8136.0 (73.5%) 18.1 (49.9)
Grids (8) 40319.8 2752.6 15771.4 (39.1%) 4.2 (28.1)
Obj. Detection (79) 100349.9 30.0 27614.1 (27.5%) 19.9 (47.1)
Segmentation (5) 12836.5 2555.2 5269.7 (41.1%) 5.9 (12.5)
Pedigree (3) 7789.0 3525.7 743.0 (9.5%) 2.8 (3.5)
CSP (2) 29450.5 46.0 18815.5 (63.9%) 35.2 (55.8)

LB_TRIANG

Promedas (28) 4220.7 1239.4 175.0 (4.1%) 0.2 (11.1)
Grids (8) 13881.3 1600.3 1.0 (0.0%) 0.0 (0.0)
Obj. Detection (79) 33295.4 27.6 5110.7 (15.3%) 10.4 (27.6)
Segmentation (5) 5174.2 1402.0 130.2 (2.5%) 1.2 (4.2)
Pedigree (3) 3646.0 1491.0 1.0 (0.0%) 0.0 (0.0)
CSP (2) 11772.0 34.5 664.0 (5.6%) 1.4 (3.0)

For each graph of the probabilistic inference dataset, we executed the enumeration algorithm for 30 min. The results
n Table 1 include only the experiments where the enumeration did not complete. For each graph we measured the
ollowing: the number of generated triangulations (#trng), the minimum observed width over all printed triangulations
min-w), the number of printed triangulations of width at most that of the first (#≤w1), the average reduction in width
over the dataset) and the maximum improvement in parentheses (w↓ (%)). In Table 2 we show the same results for fill
nstead of width (min-f, #≤f1 and f↓ (%)).

We can see that the algorithm, in both variants, is able to generate a significant number of triangulations of high
uality, in terms of both width and fill. Moreover, it amplifies the quality of the underlying triangulation, by means of
idth, and much more by means of fill. According to the number of triangulations printed, MCS_M enables generating
wice as many triangulations as LB_TRIANG. However, with the exception of only a handful of the graphs tested, the
riangulations generated by LB_TRIANG are superior in both the width and fill metrics (this is especially apparent for the
romedas and Pedigree datasets). Furthermore, this set of superior triangulations accounts for a larger portion of the total
umber of triangulations that generated.

.4. Case study

In this section we take a closer look at the behavior of the enumeration during a single execution. We use a graph
rom the Promedas dataset. In Fig. 9 we show the cumulative number of results generated over time. We consider three
ypes of results: (a) all minimal triangulations, (b) minimal triangulations of the minimum width (where the minimum
s taken over the printed triangulations), and (c) those with a width at most that of the first triangulation (≤w1), which
s the one that we would obtain by using only the triangulation algorithm at hand. The reduction in the number of new
riangulations over time is consistent with the increase in the delay entailed in the guarantee of incremental polynomial
ime, rather than polynomial delay.

Fig. 10 presents the reduction in the minimum width and minimum fill obtained during the execution of the algorithm.
ach time slice records the minimum width (solid curve) and minimum fill (dotted curve) observed up to that time. We
an see that both the width and the fill reduce over time, but the minimum observed width is reached very quickly, while
ttaining the minimum observed fill takes longer.

N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236 235
Fig. 9. Cumulative number of triangulations.

Fig. 10. Minimum width and fill over time.

7. Concluding remarks

We introduced the concept of a succinct graph representation (SGR), and presented an enumeration algorithm for its
maximal independent sets. The algorithm enumerates in incremental polynomial time under complexity assumptions: the
SGR is tractably accessible, and it has a tractable expansion. Consequently, we established an algorithm for enumerating
the minimal triangulations of a graph by reducing the problem to the enumeration of the maximal independent sets of
an SGR, and showing that the complexity assumptions hold. We also proved that enumerating the minimal triangulations
enables the enumeration of the proper tree decompositions. Our experimental study showed that the algorithm is effective
on graphs of various domains, and is able to enhance off-the-shelf algorithms for triangulation (or tree decomposition) by
generating many (rather than just one) high-quality different triangulations, and even improve standard quality measures
such as width and fill.

This work opens up quite a few directions for future work. On the theoretical side, it is left open whether the
enumeration of the minimal triangulations can be carried out with polynomial delay. As discussed in Sections 2.6 and
3.3, it is not clear how to do this with known techniques, and the abstraction used here cannot achieve this time bound.
Polynomial delay is possible in the case that the number of minimal separators of the input graph is polynomial in the
size of the input graph. In a follow up work to the original publication of this manuscript, Ravid et al. [38] showed how
to perform in such cases ranked enumeration under a wide class of cost functions that generalizes width and fill-in. If
the number of minimal separations is not bounded, the question of incorporating some order remains open. In terms
of the space complexity, it is left open to determine whether the problem can be solved using polynomial (or even
sub-exponential) space; the algorithm presented here uses exponential space in the worst case as it stores the minimal
separators of the graph and the generated results. From the practical aspect, the algorithm presented here holds many
opportunities for optimization over real-life graphs. An optimized version of the code is available online.7

Acknowledgments

This work was supported in part by the US–Israel Binational Science Foundation (BSF) Grant No. 2014391, the Israel
Science Foundation (ISF) Grant No. 1295/15, and the Austrian Science Fund (FWF): P30930-N35, W1255-N23. Benny

7 https://github.com/TechnionTDK/efficient-td-enum.

https://github.com/TechnionTDK/efficient-td-enum

236 N. Carmeli, B. Kenig, B. Kimelfeld et al. / Discrete Applied Mathematics 303 (2021) 216–236

K
t

R

imelfeld is a Taub Fellow, supported by the The Henry and Marilyn Taub Foundation, Israel. The authors are greatly
hankful to LogicBlox, and in particular Hung Ngo, for insightful discussions and for providing test data.

eferences

[1] M. Aref, B. ten Cate, T.J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T.L. Veldhuizen, G. Washburn, Design and implementation of the logicblox
system, in: SIGMOD, ACM, 2015, pp. 1371–1382.

[2] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in ak-tree, SIAM J. Algebr. Discrete Methods 8 (2) (1987) 277–284.
[3] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1–3) (1996) 21–46.
[4] A. Berry, J.R.S. Blair, P. Heggernes, Maximum cardinality search for computing minimal triangulations, in: WG, in: WG ’02, Springer-Verlag,

London, UK, UK, 2002, pp. 1–12.
[5] A. Berry, J.P. Bordat, O. Cogis, Generating all the minimal separators of a graph., in: P. Widmayer, G. Neyer, S. Eidenbenz (Eds.), WG, in: Lecture

Notes in Computer Science, vol. 1665, Springer, 1999, pp. 167–172.
[6] A. Berry, J.-P. Bordat, P. Heggernes, G. Simonet, Y. Villanger, A wide-range algorithm for minimal triangulation from an arbitrary ordering, J.

Algorithms 58 (1) (2006) 33–66.
[7] J.R. Blair, P. Heggernes, J.A. Telle, A practical algorithm for making filled graphs minimal, Theoret. Comput. Sci. 250 (1–2) (2001) 125–141.
[8] A. Blake, P. Kohli, C. Rother, Markov Random Fields for Vision and Image Processing, The MIT Press, 2011.
[9] E. Boros, K.M. Elbassioni, V. Gurvich, Algorithms for generating minimal blockers of perfect matchings in bipartite graphs and related problems,

in: ESA, in: Lecture Notes in Computer Science, vol. 3221, Springer, 2004, pp. 122–133.
[10] S. Cohen, I. Fadida, Y. Kanza, B. Kimelfeld, Y. Sagiv, Full disjunctions: Polynomial-delay iterators in action, in: VLDB, ACM, 2006, pp. 739–750.
[11] S. Cohen, B. Kimelfeld, Y. Sagiv, Generating all maximal induced subgraphs for hereditary and connected-hereditary graph properties, J. Comput.

System Sci. 74 (7) (2008) 1147–1159.
[12] A. Conte, R. Grossi, A. Marino, T. Uno, L. Versari, Listing maximal independent sets with minimal space and bounded delay, in: G. Fici, M.

Sciortino, R. Venturini (Eds.), String Processing and Information Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy, September
26-29, 2017, Proceedings, in: Lecture Notes in Computer Science, 10508, Springer, 2017, pp. 144–160.

[13] A. Conte, T. Uno, New polynomial delay bounds for maximal subgraph enumeration by proximity search, in: M. Charikar, E. Cohen (Eds.),
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, ACM, 2019,
pp. 1179–1190.

[14] D. Dahlhaus, Chapter minimal elimination ordering inside a given chordal graph, in: WG, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997,
pp. 132–143.

[15] G.A. Dirac, On rigid circuit graphs, in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 25, Universität Hamburg,
1961.

[16] M. Fishelson, D. Geiger, Exact genetic linkage computations for general pedigrees, in: ISMB/ECCB, 2002, pp. 189–198.
[17] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory 16 (1974) 47–56.
[18] M.C. Golumbic, Chapter 4 - triangulated graphs, in: M.C. Golumbic (Ed.), Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980,

pp. 81 – 104.
[19] M. Golumbic, H. Kaplan, R. Shamir, Graph sandwich problems, J. Algorithms 19 (3) (1995) 449–473.
[20] G. Gottlob, G. Greco, F. Scarcello, Pure Nash equilibria: Hard and easy games, J. Artif. Intell. Res. (JAIR) 24 (2005) 357–406.
[21] G. Gottlob, M. Grohe, N. Musliu, M. Samer, F. Scarcello, Hypertree decompositions: Structure, algorithms, and applications, in: WG, in: Lecture

Notes in Computer Science, vol. 3787, Springer, 2005, pp. 1–15.
[22] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and tractable queries, J. Comput. System Sci. 64 (3) (2002) 579–627.
[23] G. Gottlob, Z. Miklós, T. Schwentick, Generalized hypertree decompositions: NP-hardness and tractable variants, J. ACM 56 (6) (2009).
[24] P. Heggernes, Minimal triangulations of graphs: A survey, Discrete Math. 306 (3) (2006) 297–317, Minimal Separation and Minimal Triangulation.
[25] D.S. Johnson, C.H. Papadimitriou, M. Yannakakis, On generating all maximal independent sets, Inf. Process. Lett. 27 (3) (1988) 119–123.
[26] M. Jordan, An Introduction to Probabilistic Graphical Models, University of California, Berkeley, 2002, (chapter 17).
[27] O. Kalinsky, Y. Etsion, B. Kimelfeld, Flexible caching in trie joins, 2016, CoRR abs/1602.08721.
[28] B. Kenig, A. Gal, On the impact of junction-tree topology on weighted model counting, in: SUM, in: Lecture Notes in Computer Science, vol.

9310, Springer, 2015, pp. 83–98.
[29] T. Kloks, D. Kratsch, J.P. Spinrad, On treewidth and minimum fill-in of asteroidal triple-free graphs, Theoret. Comput. Sci. 175 (2) (1997)

309–335.
[30] P.G. Kolaitis, M.Y. Vardi, Conjunctive-query containment and constraint satisfaction, J. Comput. System Sci. 61 (2) (2000) 302–332.
[31] P. Kumar, C. Madhavan, Minimal vertex separators of chordal graphs, Discrete Appl. Math. 89 (1–3) (1998) 155–168.
[32] S. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. Royal

Statist. Soc. B, 50 (2) (1988) 157–224.
[33] E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan, Generating all maximal independent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput.

9 (3) (1980) 558–565.
[34] D. Marx, Approximating fractional hypertree width, ACM Trans. Algorithms 6 (2) (2010).
[35] T. Ohtsuki, L.K. Cheung, T. Fujisawa, Minimal triangulation of a graph and optimal pivoting order in a sparse matrix, J. Math. Anal. Appl. 54

(3) (1976) 622–633.
[36] A. Parra, P. Scheffler, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Appl. Math. 79 (1–3) (1997) 171–188.
[37] B.W. Peyton, Minimal orderings revisited, SIAM J. Matrix Anal. Appl. 23 (1) (2001) 271–294.
[38] N. Ravid, D. Medini, B. Kimelfeld, Ranked enumeration of minimal triangulations, in: Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, in: PODS ’19, ACM, New York, NY, USA, 2019, pp. 74–88.
[39] N. Robertson, P. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1) (1984) 49–64.
[40] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (3) (1970) 597–609.
[41] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs, SIAM J. Comput. 13 (3) (1984) 566–579.
[42] S. Tu, C. Ré, DunceCap: Query plans using generalized hypertree decompositions, in: SIGMOD, ACM, 2015, pp. 2077–2078.
[43] T. Yamada, S. Kataoka, K. Watanabe, Listing all the minimum spanning trees in an undirected graph, Int. J. Comput. Math. 87 (14) (2010)

3175–3185.
[44] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebr. Discrete Methods 2 (1) (1981) 77–79.
[45] J. Zhao, R.L. Malmberg, L. Cai, Rapid ab initio RNA folding including pseudoknots via graph tree decomposition, in: WABI, 2006, pp. 262–273.

http://refhub.elsevier.com/S0166-218X(20)30292-4/sb1
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb1
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb1
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb2
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb3
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb4
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb4
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb4
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb5
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb5
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb5
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb6
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb6
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb6
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb7
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb8
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb9
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb9
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb9
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb10
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb11
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb11
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb11
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb12
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb12
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb12
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb12
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb12
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb13
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb13
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb13
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb13
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb13
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb14
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb14
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb14
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb15
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb15
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb15
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb16
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb17
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb18
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb18
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb18
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb19
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb20
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb21
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb21
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb21
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb22
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb23
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb24
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb25
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb26
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb27
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb28
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb28
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb28
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb29
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb29
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb29
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb30
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb31
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb32
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb32
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb32
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb33
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb33
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb33
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb34
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb35
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb35
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb35
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb36
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb37
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb38
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb38
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb38
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb39
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb40
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb41
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb41
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb41
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb42
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb43
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb43
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb43
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb44
http://refhub.elsevier.com/S0166-218X(20)30292-4/sb45

	Efficiently enumerating minimal triangulations
	Introduction
	Preliminaries
	Graphs
	Minimal separators
	Chordality and triangulation
	Tree decomposition
	Enumeration
	Enumerating the minimal triangulations

	Enumerating maximal independent sets on succinct graphs
	Succinct graph representations
	The separator graph as an SGR

	Enumerating maximal independent sets in SGRs
	Algorithm description
	Correctness and efficiency

	Tightness of the algorithm
	Note on space usage

	Enumerating minimal triangulations
	Reduction
	Enumerating minimal separators
	Tractable expansion
	Correctness

	Main result

	Enumerating the proper tree decompositions
	Proper tree decompositions
	Enumeration

	Experimental evaluation
	Experimental setup
	Implementation and hardware
	Triangulation algorithms
	Datasets

	Execution cost
	Probabilistic graphical models
	Random graphs
	Database queries

	Quality
	Case study

	Concluding remarks
	Acknowledgments
	References

