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Abstract

We claimed that there is an exact reduction between any Conjunctive
Query (CQ) and its FD-extension [1, 2], but our proof fails for CQs with
self-joins. The main conclusion of our paper can still be shown in an
alternative way for CQs with self-joins: a CQ (with or without self-joins)
is tractable iff it is FD-free-connex.

1 The Mistake

The proof we provided for the following Theorem [2, Theorem 2] and its exten-
sions is wrong in the case the CQ has self-joins: Let Q be a CQ over a schema
S = (R,∆), and let Q+ be its FD-extended query. Then, Enum∆〈Q〉 ≡e

Enum∆Q+ 〈Q+〉.
Consider for example the query Q(x, y, z) ← R(x, y), S(x, y), R(x, z) with

the FD S : 1 → 2, and the database instance I with RI = {(a, b), (a, c)} and
SI = {(a, b)}. Clearly, Q(I) has answers: (a, b, c) and (a, b, b). Now let us
consider the FD-extension. We treat the dependency as between variables (x→
y), and obtain the extensionQ+(x, y, z)← R+(x, y, t), S+(x, y), R+(x, z, y) with
the FDs S+ : 1→ 2, R+ : 1→ 2 and R+ : 1→ 3. As part of the reduction that
shows Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉, we construct an instance to Q+, where

the first stage is cleaning, and it removes (a, c) from RI in order to make sure
the construction does not violate the newly introduced dependencies. Then,
after the extension phase, we obtain the instance I+ with R+I+

= {(a, b, b)}
and S+I+

= {(a, c)}. Over this construction, Q+(I+) = ∅, and so contrary to
what we want, Q(I) 6= Q+(I+).

The mistake in the proof itself is in the induction base. Given an answer to
the original CQ over the original instance, we claimed that the same assignment
is an answer to the original CQ over the cleaned instance. Indeed, in the self-
join-free case, since we are given an answer over the original instance, there exist
tuples, one of each atom of the query, that agree on the values of the variables of
the FD (these tuples assign the variables with the same values µ assigns them).
In the self-join-free case, these tuples are not removed during cleaning because
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every variable-wise dependency agrees with them. In the case with self-joins, as
the example demonstrates, this is no longer the case.

A similar mistake appears in the opposite direction of this claim: the proof
we provided for Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉 does not hold when the CQ
contains self-joins, as the following example demonstrates. Consider the query
Q(v, w, x, y, z) ← R(x, y, z), R(v, w, x), S(x, y) with the dependency S : 1 → 2,

and the database instance I+ with RI+

= {(a, b, c, d), (e, f, a, b)} and SI =
{(a, b), (e, g)}. The cleaning phase removes (e, f, a, b) from RI+, and so this
construction fails.

2 Corrections to past-made statements

Similar constructions also appears in the extensions of this Theorem [2, Theorem
2] to cardinality dependencies [2, Lemma 6 and Lemma 7], CQs with disequal-
ities [2, Lemma 8 and Lemma 10], and their combination [2, Lemma 11]. All
of these results still hold as long as we restrict the statement to only apply
for self-join-free CQs. Some of these results also appear in the conference
version of this article [1, Theorem 7 and Lemma 24], and these too still apply
for self-join-free CQs.

We can show the main results that use the broken reduction also for queries
with self-joins using an intermediate step that eliminates self-joins. Let SJF
be a function that assigns each atom with a different relation symbol. For
example, if an atom R(~v) appears in the CQ for the kth time, we can re-
place it by the atom Rk(~v) where Rk is a new relation symbol. We denote
the transformed CQ by SJF(Q) and we also replace the symbols in the depen-
dency set accordingly to obtain SJF(∆). Whenever this self-join-free version
is tractable, the original CQ is tractable too, as we can duplicate the original
relations to construct relations for the new distinct symbols and get the same
result set. Formally, this proves that Enum∆〈Q〉 ≤e EnumSJF(∆)〈SJF(Q)〉.
As our problematic proof still holds for the self-join-free case, we also have
EnumSJF(∆)〈SJF(Q)〉 ≤e EnumSJF(∆)Q+

〈SJF(Q)+〉. By combining these two

facts, we get that Enum∆〈Q〉 ≤e EnumSJF(∆)Q+
〈SJF(Q)+〉. This proves the

following correction to our corollary [2, Corollary 1][1, Corollary 8]: Let
C be an enumeration class that is closed under exact reduction. Let Q be a
CQ and let Q+ be its FD-extension. If EnumSJF(∆)Q+

〈SJF(Q)+〉 ∈ C, then

Enum∆〈Q〉 ∈ C.

3 Statements that still hold

Then, our following conclusion [2, Corollary 2][1, Corollary 9] remains un-
changed: Let Q be a CQ over a schema S = (R,∆). If Q is FD-free-connex, then
Enum∆〈Q〉 ∈ DelayClin. To prove this, we take an intermediary step through
the self-join-free version of the query, and we need the following claim.

Claim 1. Q+ is free-connex iff SJF(Q)+ is free-connex.
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Proof. First note that Q and SJF(Q) differ only on the relation names, but they
have the same sets of variables in their atoms. Then, note that the extension
procedure mostly depends only on the variable-sets inside the atoms and the
matching dependencies, but it has a small sensitivity to the relation names:
in the case of self-joins, additional fresh variables are added to the extension;
however, every such variable only appears in one atom. So the difference between
Q+ and SJF(Q)+ is only in the relation names and the fact that atoms in Q+

may have additional variables, where each such variable appears only in one
atom. Now note the following properties of free-connexity: (1) it is not affected
by relation names, and (2) it is not affected by the addition or removal of a
variable that appears only in a single atom. This proves that Q+ is free-connex
iff SJF(Q)+ is free-connex.

We can now prove the corollary. If Q is FD-free-connex, then by definition
Q+ is free-connex. We just proved that this means SJF(Q)+ is free-connex,
and therefore EnumSJF(∆)Q+

〈SJF(Q)+〉 ∈ DelayClin. Following the corrected

corollary, Enum∆〈Q〉 ∈ DelayClin. The extension of this corollary to CQs with
disequalities and CDs [2, Theorem 7] similarly holds in general.

Note that the hardness results in the article are not affected by this mistake
because these (including all of Sections 4 and 5) were already restricted only to
self-join-free CQs in the original article.
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